[1] 袁春元, 宋盘石, 蔡锦康, 等. 基于CSO-PSO算法的半主动空气悬架系统参数优化研究[J]. 中国农机化学报, 2020, 41(12): 95-101.
Yuan Chunyuan, Song Panshi, Cai Jinkang, et al. Research on parameter optimization of semiactive air suspension system using CSO-PSO algorithm [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(12): 95-101.
[2] 付涛, 王大镇, 张清忠, 等. 车辆空气悬架PID控制优化仿真[J]. 计算机仿真, 2015, 32(1): 197-201.
Fu Tao, Wang Dazhen, Zhang Qinzhong, et al. PID optimization control and simulation analysis of the vehicle air suspension [J]. Computer Simulation, 2015, 32(1): 197-20.
[3] 陈学文, 张衍成, 李萍, 等. 汽车主动悬架自适应模糊PID控制研究[J]. 机械设计与制造, 2014(2): 153-156.
Chen Xuewen, Zhang Yancheng, Li Ping, et al. Research on adaptive FuzzyPID control of automobile active suspension [J]. Machinery Design & Manufacture, 2014(2): 153-156.
[4] 曾洁如, 谷正气, 李伟平. 基于遗传算法的半主动悬架模糊PID控制研究[J]. 汽车工程, 2010, 32(5): 429-433.
Zeng Jieru, Gu Zhengqi, Li Weiping. A research on the Fuzzy PID control for vehicle semiactive suspension based on genetic algorithm [J]. Automotive Engineering, 2010, 32(5): 429-433.
[5] 武柏安, 龙海洋, 李耀刚, 等. 基于遗传算法的磁流变半主动悬架最优控制[J]. 机床与液压, 2021, 49(9): 109-114.
Wu Boan, Long Haiyang, Li Yaogang, et al. Optimal control of MR semiactive suspension based on genetic algorithm [J]. Machine Tool & Hydraulics, 2021, 49(9): 109-114.
[6] Pang H, Zhang X, Xu Z. Adaptive backsteppingbased trackingcontrol design for nonlinear active suspension system with parameter uncertainties and safety constraints [J]. ISA Transactions, 2019, 88: 23-36.
[7] Goyal A, Kumar J, Kumar V, et al. Comparative study of BLF and QLF based backstepping controllers for active suspension system [C]. 2015 39th National Systems Conference (NSC). IEEE, 2015.
[8] Wang J Y, Sun L Y. Design of semiactive air suspension system based on backstepping sliding mode control [C]. 2017 Chinese Automation Congress (CAC), IEEE, 2017.
[9] 袁春元, 蔡锦康, 王新彦. 基于粒子群算法的车辆悬架PID控制器研究[J]. 中国农机化学报, 2019, 40(5): 91-97.
Yuan Chunyuan, Cai Jinkang, Wang Xinyan.Research on the PID controller of vehicle suspension system based on particle swarm algorithm [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(5): 91-97.
[10] 王晓阳. 面向直线行驶工况的汽车空气悬架系统控制策略研究[D]. 镇江: 江苏科技大学, 2019.
Wang Xiaoyang. Research on control strategy of vehicle air suspension system under straightline driving condition [D]. Zhenjiang: Jiangsu University of Science and Technology, 2019.
[11] Sun W, Pan H, Zhang Y, et al. Multiobjective control for uncertain nonlinear active suspension systems [J]. Mechatronics, 2014, 24(4): 318-327.
[12] Yao B, Xu L. Output feedback adaptive robust control of uncertain linear systems with disturbances [J]. Journal of Dynamic Systems Measurement and Control, 2006, 128(4): 938-945.
[13] Sun L, Wang X. Nonlinear control for semiactive suspension with input constraints [J]. IFACPapers Online, 2018, 51(31): 131-135.
[14] 宋盘石. 基于硬件在环仿真技术的ECAS控制策略及试验研究[D]. 镇江: 江苏科技大学, 2020.
Song Panshi. ECAS control strategy and experimental research based on hardwareintheloop simulation technology [D]. Zhenjiang: Jiangsu University of Science and Technology, 2020.
|