[1] 刘江川, 高云礼. 蛋鸡育成期的科学饲养和日常管理要点[J]. 现代畜牧科技, 2020(9): 32-33.
Liu Jiangchuan, Gao Yunli. Key points of scientific raising and daily management of laying hens in the breeding period [J]. Modern Animal Husbandry Technology, 2020(9): 32-33.
[2] 郭磊, 陈信, 魏晓明, 等. 蛋鸡福利化养殖模式运用进展[J]. 中国畜禽种业, 2020, 16(7): 184.
Guo Lei, Chen Xin, Wei Xiaoming, et al. Progress in the application of welfare breeding model for laying hens [J]. Chinas Livestock and Poultry Seed Industry, 2020, 16(7): 184.
[3] 任晓惠, 刘刚, 张淼, 等. 基于支持向量机分类模型的奶牛行为识别方法[J]. 农业机械学报, 2019, 50(S1): 290-296.
Ren Xiaohui, Liu Gang, Zhang Miao, et al. Dairy cattles behavior recognition method based on support vector machine classification model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(S1): 290-296.
[4] 杨秋妹, 肖德琴, 张根兴. 猪只饮水行为机器视觉自动识别[J]. 农业机械学报, 2018, 49(6): 232-238.
Yang Qiumei, Xiao Deqin, Zhang Genxing. Automatic pig drinking behavior recognition with machine vision[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(6): 232-238.
[5] Cangar, Leroy T, Guarino M. Automatic realtime monitoring of locomotion and posture behavior of pregnant cows prior to calving using online image analysis [J]. Computers & Electronics in Agriculture, 2008, 64(1): 53-60.
[6] Leroy T, Vranken E, Brecht AV, et al. A computer vision method for online behavioral quantification of individually caged poultry [J]. Transactions of the ASABE, 2006, 49(3): 795-802.
[7] 劳凤丹, 杜晓冬, 滕光辉. 基于深度图像的蛋鸡行为识别方法[J]. 农业机械学报, 2017, 48(1): 155-162.
Lao Fengdan, Du Xiaodong, Teng Guanghui. Automatic recognition method of laying hen behaviors based on depth image processing [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(1): 155-162.
[8] 劳凤丹, 滕光辉, 李军, 等. 机器视觉识别单只蛋鸡行为的方法[J]. 农业工程学报, 2012, 28(24): 157-163.
Lao Fengdan, Teng Guanghui, Li Jun, et al. Behavior recognition method for individual laying hen based on computer vision [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(24): 157-163.
[9] Pereira D F, Miyamoto B C B, Maia G D N, et al. Machine vision to identify broiler breeder behavior [J]. Computers and Electronics in Agriculture, 2013, 99: 194-199.
[10] Poursaberi A, Wichman A, Bahr C, et al. Automatic monitoring of turkeys: A visionbased approach to detect and analyse the behavior of turkeys in transport cages based on ellipse fitting[J]. American Journal of Physiology, 2009, 267(1): 295-308.
[11] 季金胜. 高分辨率遥感影像典型地物目标的特征选择及其稳定性研究[D]. 上海: 上海交通大学, 2015.
Ji Jingsheng. Research on feature selection and stability of typical ground objects in high resolution remote sensing images [D]. Shanghai: Shanghai Jiao Tong University, 2015.
[12] 李志铭, 赵静, 兰玉彬, 等. 基于无人机可见光图像的作物分类研究[J]. 西北农林科技大学学报(自然科学版), 2020, 48(6): 137-144, 154.
Li Zhiming, Zhao Jing, Lan Yubin, et al. Crop classification based on UAV visible image [J]. Journal of Northwest A & F University (Natural Science Edition), 2020, 48(6): 137-144, 154.
[13] 戴建国, 张国顺, 郭鹏, 等. 基于无人机遥感可见光影像的北疆主要农作物分类方法[J]. 农业工程学报, 2018, 34(18): 122-129.
Dai Jianguo, Zhang Guoshun, Guo Peng, et al. Classification method of main crops in northern Xinjiang based on UAV visible waveband images [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(18): 122-129.
[14] Huang Guangbin, Zhu Qinyu, Cheekheong S. Extreme learning machine: A new learning scheme of feedforward neural networks [C]. IEEE International Joint Conference on Neural Networks. IEEE, 2005.
|