[1] 胡丹. 基于双扩展卡尔曼滤波的汽车状态及路面附着系数估计算法研究[D]. 长春: 吉林大学, 2009.Hu Dan. Research on the vehicle state and road tire friction coefficient eatimation based on dual extended kalman filter [D]. Changchun: Jilin University, 2009.
[2] 时艳茹. 基于UKF滤波的汽车纵向和侧向速度估计算法研究[D]. 长春: 吉林大学, 2011.Shi Yanru. Vehicle longitudinal and lateral velocity estimation based on unscented Kalman filter [D]. Changchun: Jilin University, 2011.
[3] 刘义, 杨鹏. 基于卡尔曼滤波的云台自适应姿态优化算法[J]. 自动化与仪表, 2022, 37(11): 80-86.
Liu Yi, Yang Peng. Adaptive attitude optimization algorithm of PTZ based on Kalman filter [J]. Automation & Instrumentation, 2022, 37(11): 80-86.
[4] Oei M, Sawodny O. Vehicle parameter estimation with Kalman filter disturbance observer [J]. IFAC Papers On Line, 2022, 55(27): 497-502.
[5] Sunusi I I, Zhou J, Wang Z Z, et al. Intelligent tractors: Review of online traction control process [J]. Computers and Electronics in Agriculture, 2020, 170: 105176.
[6] Kim J S, Lee D K, Ahn C K. Receding horizon directional unscented filter for heavyduty vehicles incorporating sensor modeling constraints [J]. Measurement, 2021, 183: 109874.
[7] 李斌飞, 崔世钢, 施国英, 等. 基于无迹卡尔曼滤波的农用无人机定位研究[J]. 中国农机化学报, 2020, 41(9): 156-161.
Li Binfei, Cui Shigang, Shi Guoying, et al. Research on agricultural unmanned aerial vehicle positioning based on unscented Kalman filter [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(9): 156-161.
[8] 胡敬宇, 汪, 严永俊, 等. 基于限定记忆随机加权扩展卡尔曼滤波的车辆状态估计[J]. 东南大学学报(自然科学版), 2022, 52(2): 387-393.
Hu Jingyu, Wang Gong, Yan Yongjun, et al. Vehicle state estimation based on limited memory random weighted extended Kalman filter [J]. Journal of Southeast University (Natural Science Edition), 2022, 52(2): 387-393.
[9] 林棻, 赵又群. 基于双重扩展自适应卡尔曼滤波的汽车状态和参数估计[J]. 中国机械工程, 2009, 20(6): 750-755.
Lin Fen, Zhao Youqun. Vehicle state and parameter estimation based on dual extended adaptive Kalman filter [J]. China Mechanical Engineering, 2009, 20(6): 750-755.
[10] Arasaratnam I, Haykin S. Cubature kalman filters [J]. IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269.
[11] 魏喜庆, 宋申民. 无模型容积卡尔曼滤波及其应用[J]. 控制与决策, 2013, 28(5): 769-773.
Wei Xiqing, Song Shenmin. Modelfree cubature Kalman filter and its application [J]. Control and Decision, 2013, 28(5): 769-773.
[12] Wenzel T A, Burnham K J, Blundell M V, et al. Dual extended Kalman filter for vehicle state and parameter estimation [J]. Vehicle System Dynamics, 2006, 44(2): 153-171.
[13] Ghansah B, Benuwa B B, Essel D D, et al. A Review of nonLinear kalman filtering for target tracking [J]. International Journal of Data Analytics(IJDA), 2022, 3(1): 1-25.
[14] Hahn J O, Rajamani R, Alexander L. GPS-based reaHtime identification of tireroad friction coefficient [J]. IEEE Transactions on Control Systems Technology, 2002, 10(3): 331-343.
[15] Tanelli M, Piroddi L, Savaresi S M. Realtime identification of tireroad friction conditions [J]. IET Control Theory and Applications, 2009, 3(7): 891-906.
[16] 陈锦曦. 基于容积卡尔曼滤波的路面附着系数估计算法研究[D]. 成都: 电子科技大学, 2014.Chen Jinxi. Research on the algorithm of the road friction coefficient estimation based on the cubature Kalman filter [D]. Chengdu: University of Electronic Science and Technology of China, 2014.
[17] 李刚, 解瑞春, 卫绍元, 等. 基于双容积卡尔曼滤波的车辆状态与路面附着系数估计[J]. 中国科学: 技术科学, 2015, 45(4): 403-414.
Li Gang, Xie Ruichun, Wei Shaoyuan, et al.Vehicle state and road friction coefficient estimation based on double cubature Kalman filter [J]. China: Science of Technology, 2015, 45(4): 403-414.
[18] 宗新怡, 李刚, 邓伟文. 四轮独立驱动电动汽车车速估计研究[J]. 机械设计与制造, 2013(9): 83-85.
Zong Xinyi, Li Gang, Deng Weiwen.Study on velocity estimation of fourwheel independent drive electric vehicle [J]. Mechanical Design and Manufacturing, 2013(9): 83-85.
[19] 汪涛. 面向商用车的路面附着系数估计研究[D]. 重庆: 重庆邮电大学, 2019.Wang Tao. Estimation of road adhesion coefficient for commercial vehicles [D]. Chongqing: Chongqing University of Posts and Telecommunications, 2019.
|