[1] 成伟, 张文爱, 冯青春, 等. 基于改进YOLOv3的温室番茄果实识别估产方法[J]. 中国农机化学报, 2021, 42(4): 176-182.
Cheng Wei, Zhang Wenai, Feng Qingchun, et al. Method of greenhouse tomato fruit identification and yield estimation based on improved YOLOv3[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(4): 176-182.
[2] 谷端银, 常青, 王晓云, 等. 日光温室秋冬茬不同品种樱桃番茄生长及品质特性研究[J]. 北方园艺, 2022(18): 46-51.
Gu Duanyin, Chang Qing, Wang Xiaoyun, et al. Study on the growth and quality characteristics of different cherry tomato varieties in greenhouse in autumnwinter season [J]. Northern Horticulture, 2022(18): 46-51.
[3] 吕诗, 魏欢, 王小敏, 等. 微润灌溉配合减量施肥对设施番茄土壤铵态氮分布及淋失的影响[J]. 河北农业大学学报, 2022, 45(6): 39-44.
Lü Shi, Wei Huan, Wang Xiaomin, et al. Effects of microirrigation combined with reduced fertilization on distribution and leaching of ammonium nitrogen in protected tomato soil [J]. Journal of Hebei Agricultural University, 2022, 45(6): 39-44.
[4] Dai Y, Wang Z, Li J, et al. Tofu byproduct soy whey substitutes urea: Reduced ammonia volatilization, enhanced soil fertility and improved fruit quality in cherry tomato production [J]. Environmental Research, 2023, 226: 115662.
[5] 邢英英, 张富仓, 张燕, 等. 滴灌施肥水肥耦合对温室番茄产量、品质和水氮利用的影响[J]. 中国农业科学, 2015, 48(4): 713-726.
Xing Yingying, Zhang Fucang, Zhang Yan, et al. Effect of irrigation and fertilizer coupling on greenhouse tomato yield, quality, water and nitrogen utilization under fertigation [J]. Scientia Agricultura Sinica, 2015, 48(4): 713-726.
[6] Wu Y, Si W, Yan S, et al. Water consumption, soil nitratenitrogen residue and fruit yield of dripirrigated greenhouse tomato under various irrigation levels and fertilization practices [J]. Agricultural Water Management, 2023, 277: 108092.
[7] Cheng M, Wang H, Fan J, et al. Evaluation of AquaCrop model for greenhouse cherry tomato with plastic film mulch under various water and nitrogen supplies [J]. Agricultural Water Management, 2022, 274: 107949.
[8] 董环, 娄春荣, 王秀娟, 等. 氮、钾运筹对设施番茄产量、果实硝酸盐含量及土壤硝态氮含量的影响[J]. 江苏农业学报, 2019, 35(2): 378-383.
Dong Huan, Lou Chunrong, Wang Xiujuan, et al. Effects of nitrogen and potassium application on tomato yield,fruit nitratecontent and soil nitrate nitrogen content [J]. Jiangsu Journal of Agricultural Sciences, 2019, 35(2): 378-383.
[9] CoyagoCruz E, MeléndezMartínez A J, Moriana A, et al. Yield response to regulated deficit irrigation of greenhouse cherry tomatoes [J]. Agricultural Water Management, 2019, 213: 212-221.
[10] 韩雪, 曲梅, 李银坤, 等. 不同施肥水平对温室番茄生长、氮吸收及产量品质的影响[J]. 中国土壤与肥料, 2021(2): 162-169.
Han Xue, Qu Mei, Li Yinkun, et al. Effects of different fertilization levels on tomato growth, nitrogen uptake, yield and quality in greenhouse [J]. Soil and Fertilizer Sciences in China, 2021(2): 162-169.
[11] Wu Y, Yan S, Fan J, et al. Combined effects of irrigation level and fertilization practice on yield, economic benefit and waternitrogen use efficiency of dripirrigated greenhouse tomato [J]. Agricultural Water Management, 2022, 262: 107401.
[12] Volpi I, Bosco S, Ragaglini G, et al. Tomato productivity and soil greenhouse gas emissions under reduced water and N fertilizers in a mediterranean environment [J]. Agriculture, Ecosystems & Environment, 2022, 326: 107819.
[13] Li H, Liu H, Gong X, et al. Optimizing irrigation and nitrogen management strategy to trade off yield, crop water productivity, nitrogen use efficiency and fruit quality of greenhouse grown tomato [J]. Agricultural Water Management, 2021, 245: 106570.
[14] 范胜男, 季延海, 刘明池, 等. 番茄叶片对不同灌溉量的生理响应[J]. 节水灌溉, 2023(1): 19-25.
Fan Shengnan, Ji Yanhai, Liu Mingchi, et al. Physiological responses of tomato leaves to different irrigation rates [J]. Water Saving Irrigation, 2023(1): 19-25.
[15] Liu H, Meng F, Miao H, et al. Effects of postharvest methyl jasmonate treatment on main healthpromoting components and volatile organic compounds in cherry tomato fruits [J]. Food Chemistry, 2018, 263: 194-200.
[16] 胡中泽, 衣政伟, 杨大柳, 等. 氮肥减施与花生秸秆还田对麦田土壤氨挥发、氮肥利用率及产量的影响[J]. 江苏农业学报, 2022, 38(6): 1492-1499.
Hu Zhongze, Yi Zhengwei, Yang Daliu, et al. Effects of nitrogen reduction and peanut straw returning on ammonia volatilization, nitrogen use efficiency and grain yield in wheat field [J]. Jiangsu Journal of Agricultural Sciences, 2022, 38(6): 1492-1499.
[17] 廉晓娟, 王艳, 梁新书, 等. 不同施肥水平对设施番茄中微量元素吸收的影响[J]. 江苏农业科学, 2020, 48(16): 197-200.
[18] Li W, Gao Y, Tian Y, et al. Doublerootgrafting enhances irrigation water efficiency and reduces the adverse effects of saline water on tomato yields under alternate partial rootzone irrigation [J]. Agricultural Water Management, 2022, 264: 107488.
[19] Liang H, Chen Q, Liang B, et al. Modeling the effects of longterm reduced N application on soil N losses and yield in a greenhouse tomato production system [J]. Agricultural Systems, 2020, 185: 102951.
[20] 刘钰, 邵孝侯, 陈丹艳, 等. 盆栽条件下水氮耦合对烤烟光合特性及产量的影响研究[J]. 中国农机化学报, 2014, 35(2): 99-102.
Liu Yu, Shao Xiaohou, Chen Danyan, et al. Effects of water and nitrogen coupling on photosynthesis characteristics and yield of fluecured tobacco based on a pot experiment [J]. Journal of Chinese Agricultural Mechanization, 2014, 35(2): 99-102
[21] Li Y, Sun Y, Liao S, et al. Effects of two slowrelease nitrogen fertilizers and irrigation on yield, quality, and waterfertilizer productivity of greenhouse tomato [J]. Agricultural Water Management, 2017, 186: 139-146.
[22] Luo H, Li F. Tomato yield, quality and water use efficiency under different drip fertigation strategies [J]. Scientia Horticulturae, 2018, 235: 181-188.
[23] 王贺辉, 赵恒, 高强, 等. 温室番茄滴灌灌水指标试验研究[J]. 节水灌溉, 2005(4): 22-25.
[24] 张燕, 张富仓, 袁宇霞, 等. 灌水和施肥对温室滴灌施肥番茄生长和品质的影响[J]. 干旱地区农业研究, 2014, 32(2): 206-212.Zhang Yan, Zhang Fucang, Yuan Yuxia, et al. The effect of irrigation and fertilization on growth and quality of tomato under fertigation in greenhouse [J]. Agricultural Research in the Arid Areas, 2014, 32(2): 206-212.
[25] 李耀霞, 郁继华, 张国斌, 等. 灌水上限和施肥量对温室番茄生长发育的影响[J]. 西北农林科技大学学报(自然科学版), 2020, 48(2): 42-51.
Li Yaoxia, Yu Jihua, Zhang Guobin, et al. Effects of irrigation upper limit and fertilizer application on growth and development of tomato in greenhouse [J]. Journal of Northwest A & F University (Natural Science Edition), 2020, 48(2): 42-51.
[26] Agbna G H D, Dongli S, Zhipeng L, et al. Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato [J]. Scientia Horticulturae, 2017, 222: 90-101.
[27] 项倩, 吴磊, 徐若涵, 等. 不同温度下染病番茄叶片SPAD和叶绿素含量的相关性[J]. 北方园艺, 2022(18): 8-15.
Xiang Qian, Wu Lei, Xu Ruohan, et al. Correlation between SPAD and chlorophyll content in infected tomato leaves at different temperatures [J]. Northern Horticulture, 2022(18): 8-15.
[28] 张新燕, 王浩翔, 牛文全. 不同水氮供应模式对设施番茄生长及产量的影响[J]. 灌溉排水学报, 2020, 39(11): 55-60.
Zhang Xinyan, Wang Haoxiang, Niu Wenquan. The effects of different waternitrogen couplings on growth and yield of greenhouse tomato [J]. Journal of Irrigation and Drainage, 2020, 39(11): 55-60.
[29] 王如珂, 郭相平, 曹克文, 等. 秸秆隔层及水氮管理对番茄光合特性、产量品质和水氮利用的影响[J]. 江苏农业科学, 2022, 50(5): 128-134.
[30] Meise P, Jozefowicz A M, Uptmoor R, et al. Comparative shoot proteome analysis of two potato (Solanum tuberosum L.) genotypes contrasting in nitrogen deficiency responses in vitro [J]. Journal of Proteomics, 2017, 166: 68-82.
[31] 任胜茂, 邓榆川, 韩文斌, 等. 施氮对蚕豆根系形态及光合产物积累分配的影响[J]. 江苏农业科学, 2019, 47(4): 72-77.
[32] 郭亚宁, 周建朝, 王秋红, 等. 作物水氮耦合效应的研究进展[J]. 中国农学通报, 2019, 35(15): 1-5.
Guo Yaning, Zhou Jianchao, Wang Qiuhong, et al. Research progress on coupling effect of water and nitrogen in crops [J]. Chinese Agricultural Science Bulletin, 2019, 35(15): 1-5.
[33] Wang F, Kang S, Du T, et al. Determination of comprehensive quality index for tomato and its response to different irrigation treatments [J]. Agricultural Water Management, 2011, 98(8): 1228-1238.
[34] 于锡宏, 朱桐, 佟雪姣, 等. 土壤含水量对日光温室秋冬番茄生长及产量的影响[J]. 东北农业大学学报, 2022, 53(8): 36-43.
Yu Xihong, Zhu Tong, Tong Xuejiao, et al. Effects of soil moisture content on growth and yield of tomato in autumn and winter in solar greenhouse [J]. Journal of Northeast Agricultural University, 2022, 53(8): 36-43
[35] Parisi M, Burato A, Pentangelo A, et al. Towards the optimal mineral N fertilization for improving peeled tomato quality grown in southern Italy [J]. Horticulturae, 2022, 8(8): 697.
[36] Feng Y, He H, Li D, et al. Biowaste hydrothermal carbonization aqueous product application in rice paddy: Focus on rice growth and ammonia volatilization [J]. Chemosphere, 2021, 277: 130233.
|