[1] 曹乐平. 基于机器视觉的植物病虫害实时识别方法[J]. 中国农学通报, 2015, 31(20): 244-249.
Cao Leping. The research progress on machine recognition of plant diseases and insect pests [J]. Chinese Agricultural Science Bulletin, 2015, 31(20): 244-249.
[2] 李秀军, 田春杰, 徐尚起, 等. 我国农田生态环境质量现状及发展对策[J]. 土壤与作物, 2018, 7(3): 267-275.
Li Xiujun, Tian Chunjie, Xu Shangqi, et al. Current situation of ecological environment quality and countermeasures in Chinas farmland [J]. Soil and Crops, 2018, 7(3): 267-275.
[3] 薛新宇, 秦维彩, 孙竹, 等. N-3型无人直升机施药方式对稻飞虱和稻纵卷叶螟防治效果的影响[J]. 植物保护学报, 2013, 40(3): 273-278.
Xue Xinyu, Qin Weicai, Sun Zhu, et al. Effects of N-3 UAV spraying methods on the efficiency of insecticides against planthoppers and Cnaphalocrocis medinalis [J]. Acta Phytophylacica Sinica, 2013, 40(3): 273-278.
[4] 陈盛德, 兰玉彬, 李继宇, 等. 航空喷施与人工喷施方式对水稻施药效果比较[J]. 华南农业大学学报, 2017, 38(4): 103-109.
Chen Shengde, Lan Yubin, Li Jiyu, et al. Comparison of the pesticide effects of aerial and artificial spray applications for rice [J]. Journal of South China Agricultural University, 2017, 38(4): 103-109.
[5] 李耀明, 唐会联, 杨丽, 等. 新型药械性能测定及其应用于稻飞虱防治的效果[J]. 中国植保导刊, 2015, 35(1): 60-63.
Li Yaoming, Tang Huilian, Yang Li, et al. Performance determination of new type medical equipment and its application in rice planthopper control [J]. China Plant Protection Guide, 2015, 35(1): 60-63.
[6] 张慧春, 郑加强, 周宏平, 等. 农药喷施过程中雾滴沉积分布与脱靶飘移研究[J]. 农业机械学报, 2017, 48(8): 114-122.
Zhang Huichun, Zheng Jiaqiang, Zhou Hongping, et al. Droplet deposition distribution and offtarget drift during pesticide spraying operation [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(8): 114-122.
[7] 张京, 宋坚利, 何雄奎, 等. 扇形雾喷头雾化过程中雾滴运动特性[J]. 农业机械学报, 2011, 42(4): 66-69, 75.
Zhang Jing, Song Jianli, He Xiongkui, et al. Droplets movement characteristics in atomization process of fiat fan nozzle [J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(4): 66-69, 75.
[8] 秦维彩, 邱白晶, 顾伟, 等. 喷头类型对棚室黄瓜叶片的药液沉积和白粉病防治效果的影响[J]. 植物保护学报, 2016, 43(3): 501-506.
Qin Weicai, Qiu Baijing, Gu Wei, et al. Influences of nozzle types on pesticide deposition on cucumber leaves and their inhibitive effects on Sphaerotheca fuliginea in greenhouses [J]. Acta Phytophylacica Sinica, 2016, 43(3): 501-506.
[9] 兰玉彬, 张海艳, 文晟, 等. 静电喷嘴雾化特性与沉积效果试验分析[J]. 农业机械学报, 2018, 49(4): 130-139.
Lan Yubin, Zhang Haiyan, Wen Sheng, et al. Analysis and experiment on atomization characteristics and spray deposition of electrostatic nozzle [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 130-139.
[10] 董福龙, 周宏平. 国外植保喷嘴技术开发进展[J]. 江西农业大学学报, 2018, 40(4): 866-874.
Dong Fulong, Zhou Hongping. Development of foreign plant protection nozzles [J]. Journal of Jiangxi Agricultural University, 2018, 40(4): 866-874.
[11] 曾爱军, 王昌陵, 宋坚利, 等. 风洞环境下喷头及助剂对植保无人飞机喷雾飘移性的影响[J]. 农药学学报, 2020, 22(2): 315-323.
Zeng Aijun, Wang Changling, Song Jianli, et al. Effects of nozzle types, adjuvants and environmental conditions on spray drift potential of unmanned aerial vehicles in a wind tunnel [J]. Chinese Journal of Pesticide Science, 2020, 22(2): 315-323.
[12] 杨希娃, 周继中, 何雄奎, 等. 喷头类型对药液沉积和麦蚜防效的影响[J]. 农业工程学报, 2012, 28(7): 46-50.
Yang Xiwa, Zhou Jizhong, He Xiongkui, et al. Influences of nozzle types on pesticide deposition and insecticidal effect to wheat aphids [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(7): 46-50.
[13] 徐德进, 徐广春, 许小龙, 等. 喷头和施药液量对水稻植株上农药沉积和药剂防治效果的影响[J]. 植物保护学报, 2019, 46(2): 409-416.
Xu Dejin, Xu Guangchun, Xu Xiaolong, et al. Influence of spray nozzle and spray volume on pesticide deposition and control effect in rice [J]. Acta Phytophylacica Sinica, 2019, 46(2): 409-416.
[14] 何勇, 肖舒裴, 方慧, 等. 植保无人机施药喷嘴的发展现状及其施药决策[J]. 农业工程学报, 2018, 34(13): 113-124.
He Yong, Xiao Shupei, Fang Hui, et al. Development situation and spraying decision of spray nozzle for plant protection UAV [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(13): 113-124.
[15] Carlton J B, Bouse L F. Distribution of the electricfield for an electrostatic spray charging aircraft [J]. Transactions of the ASAE, 1977, 20(2): 248-252.
[16] Carlton J B, Bouse L F. Electrostatic spinnernozzle for chargingaerial sprays [J]. Transactions of the ASAE, 1980, 23(6): 1369-1373.
[17] 薛新宇, 兰玉彬. 美国农业航空技术现状和发展趋势分析[J]. 农业机械学报, 2013, 44(5): 194-201.
Xue Xinyu, Lan Yubin. Agricultural aviation applications in USA [J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(5): 194-201.
[18] Fritz B K, Hoffmann W C, Czaczyk Z, et al. Measurement and classification methods using the ASAE S572.1 reference nozzles [J]. Journal of Plant Protection Research, 2012, 52(4): 447-457.
[19] 张慧春, 郑加强, 周宏平, 等. 转笼式生物农药雾化喷头的性能试验[J]. 农业工程学报, 2013, 29(4): 63-70, 295.
Zhang Huichun, Zheng Jiaqiang, Zhou Hongping, et al. Performance test of rotating cage type biopesticide atomizing nozzle [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(4): 63-70, 295.
[20] 周晴晴, 薛新宇, 钱生越, 等. 航空喷嘴的使用现状及研究方向[J].中国农机化学报, 2016, 37(10): 234-237.
Zhou Qingqing, Xue Xinyu, Qian Shengyue, et al. Application status and research direction of nozzles in aviation spray [J]. Chinese Journal of Agricultural Machinery Chemistry, 2016, 37(10): 234-237.
[21] ANSI/ASABE S572.3-2020, Spray nozzle classification by droplet spectra [S].
[22] Czaczyk Z, Kruger G, Hewitt A. Droplet size classification of air induction flat fan nozzles [J]. Journal of Plant Protection Research, 2012.
[23] Womac A R, Ii R A M, Kirk I W. Measurement variations in reference sprays for nozzle classification [J]. Transactions of the ASAE, 1999, 42(3): 609-616.
[24] Fritz B K, Hoffmann W C, Kruger G R, et al. Comparison of drop size data from ground and aerial application nozzles at three testing laboratories [J]. Atomization and Sprays, 2014, 24(2): 181-192.
[25] 茹煜, 朱传银, 包瑞, 等. 航空植保作业用喷头在风洞和飞行条件下的雾滴粒径分布[J]. 农业工程学报, 2016, 32(20): 94-98.
Ru Yu, Zhu Chuanyin,Bao Rui, et al. Droplet size distribution of aerial nozzle for plant protection in wind tunnel and flight conditions [J]. Transactions of the Chinese Society for Agricultural Engineering, 2016, 32(20): 94-98.
[26] Guler H, Zhu H, Ozkan H E, et al. Spray characteristics and drift reduction potential with air induction and conventional flatfan nozzles [J]. Portland, 2007, 50(3): 745-754.
[27] 张慧春, Dorr Gary, 郑加强, 等. 扇形喷头雾滴粒径分布风洞试验[J].农业机械学报, 2012, 43(6): 53-57, 52.
Zhang Huichun, Dorr Gary, Zheng Jiaqiang, et al. Wind tunnel experiment of influence on droplet size distribution of flat fan nozzles [J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(6): 53-57, 52.
[28] 王双双, 何雄奎, 宋坚利, 等. 农用喷头雾化粒径测试方法比较及分布函数拟合[J]. 农业工程学报, 2014, 30(20): 34-42.
Wang Shuangshuang, He Xiongkui, Song Jianli, et al. Measurement comparison and fitted distribution equation of droplet size for agricultural nozzles [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(20): 34-42.
[29] 周晴晴, 薛新宇, 周良富, 等. 施药喷嘴分级可行性及方法研究[J]. 农业工程学报, 2019, 35(9): 66-72.
Zhou Qingqing, Xue Xinyu, Zhou Liangfu, et al. Feasibility and method of classification of spraying nozzle [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(9): 66-72.
[30] 傅泽田, 祁力钧, Miller P C H. 转子式喷头喷雾飘移性能试验和分级[J]. 农业机械学报, 1999(2): 44-49.
Fu Zetian, Qi Lijun, Miller P C H. The measurement and classification on drift property of spinning disk sprayers [J]. Transactions of the Chinese Society for Agricultural Machinery, 1999(2): 44-49.
[31] Bai G, Nakano K, Mizukami T, et al. Characteristics and classification of Japanese nozzles based on relative spray drift potential [J]. Crop Protection, 2013, 46: 88-93.
[32] Qi L, Miller P C H, Fu Z. The classification of the drift risk of sprays produced by spinning discs based on wind tunnel measurements [J]. Biosystems Engineering, 2008, 100(1): 38-43.
[33] Zande, De V, Porskamp H A J, et al. Influence of reference nozzle choice on spray drift classification [J]. Aspects of Applied Biology, 2002, 66: 49-55.
[34] 曾爱军, 何雄奎, 陈青云, 等. 典型液力喷头在风洞环境中的飘移特性试验与评价[J]. 农业工程学报, 2005(10): 78-81.
Zeng Aijun, He Xiongkui, Chen Qingyun, et al. Spray drift potential evaluation of typical nozzles under wind tunnel conditions [J]. Transactions of the Chinese Society of Agricultural Engineering, 2005(10): 78-81.
[35] 徐德进, 徐广春, 许小龙, 等. 喷头和施药液量对水稻植株上农药沉积和药剂防治效果的影响[J]. 植物保护学报, 2019, 46(2): 409-416.
Xu Dejin, Xu Guangchun, Xu Xiaolong, et al. Influence of spray nozzle and spray volume on pesticide deposition and control effect in rice [J]. Acta Phytophylacica Sinica, 2019, 46(2): 409-416.
[36] Garcerá C, Moltó E, Chueca P. Spray pesticide applications in Mediterranean citrus orchards: Canopy deposition and offtarget losses [J]. Science of the Total Environment, 2017, 599: 1344-1362.
[37] Miller P C H, Mawer C J, Merritt C R. Wind tunnel studies of the spray drift from two types of agricultural spray nozzle [J]. Aspects of Applied Biology, 1989, 21: 237-238.
[38] Uk S. Tracing insecticide spray droplets by sizes on natural surfaces: The state of the art and its value [J]. Prescience, 1977, 8(5): 501-509.
[39] 袁会珠, 王国宾. 雾滴大小和覆盖密度与农药防治效果的关系[J]. 植物保护, 2015, 41(6): 9-16.
Yuan Huizhu, Wang Guobin. Effects of droplet size and deposition density on field efficacy of pesticides [J]. Plant Protection, 2015, 41(6): 9-16.
[40] 陈建文, 张志伟, 王长周, 等. 液体黏度和表面张力对雾化颗粒粒径的影响[J]. 东北大学学报(自然科学版), 2010, 31(7): 1023-1025.
Chen Jianwen, Zhang Zhiwei, Wang Changzhou, et al. Effects of fluid viscosity and surface tension on the size of atomized droplets [J]. Journal of Northeastern University (Natural Science Edition), 2010, 31(7): 1023-1025.
[41] Teske M E, Thistle H W. Aerial application model extension into the far field [J]. Biosystems Engineering, 2004, 89(1): 29-36.
|