[1] 赵吉柱, 滑雪, 陶波, 等. 不同处理方法对假苍耳种子萌发的影响[J].东北农业大学学报, 2010, 41(8):15-18.
Zhao Jizhu, Hua Xue, Tao Bo, et al.Study on Iva xanthifolia seed germination with different treatments [J].Journal of Northeast Agricultural University, 2010, 41(8):15-18.
[2] 贺泽霖, 贾也纯, 薛林, 等. 作物种子处理技术的研究现状与展望[J]. 黑龙江农业科学, 2021(9): 116-122.
He Zelin, Jia Yechun, Xue Lin, et al. Research progress and prospectsin treatment of technology of crop seeds [J]. Heilongjiang Agricultural Science, 2021(9): 116-122.
[3] 陈立才, 黄芳, 周明, 等. 匀强高压静电场处理水稻种子的生物场效应试验研究[J]. 江西农业学报, 2016, 28(5): 28-30,39.
Chen Licai, Huang Fang, Zhou Ming, et al. Study on biological field effect of uniform highvoltage electrostatic field on rice seeds [J]. Jiangxi Agricultural Journal, 2016, 28 (5): 28-30,39.
[4] 黄洪云, 杜宁, 韩哲, 等. 高压静电场处理种子对小麦幼苗抗寒性的影响[J]. 种子, 2016, 35(8): 24-26,31.
Huang Hongyun, Du Ning, Han Zhe, et al. Effects of wheat seedlings cold resistance through pretreatment of seeds with high voltage electrostatic field [J]. Seed, 2016, 35(8): 24-26,31.
[5] 李宸, 杨小环, 吴冬梅, 等. 高压静电场处理缓解高粱种子快速脱水伤害的生理机制[J]. 山西农业科学, 2020, 48(3): 339-344.
Li Chen, Yang Xiaohuan, Wu Dongmei, et al.Physiological mechanism of highpressure electrostatic field treatment for reducing rapid dehydration injury of sorghum seeds [J]. Journal of Shanxi Agricultural Sciences, 2020, 48 (3): 339-344.
[6] 郭龙芳, 薛福东, 郭九峰, 等. 高压电场对沙葱种子发芽率的影响[A].中国物理学会静电专业委员会. 中国物理学会第十九届全国静电学术会议论文集[C]. 2014:5.
[7] 陈建中, 胡建芳, 杜慧玲, 等. 高压静电场处理对番茄陈种子萌发活力的影响[J]. 河南农业科学, 2015, 44(7): 111-114.
Chen Jianzhong, Hu Jianfang, Du Huiling, et al.Effect of highvoltage electrostatic field treatment on germination vigor of old tomato seeds [J]. Journal of Henan Agricultural Sciences, 2015, 44 (7): 111-114.
[8] 武翠卿, 孙静鑫, 武新慧, 等. 高压电场预处理杂粮种子对生长势及产量的影响[J]. 中国农机化学报, 2022, 43(8): 75-81.
Wu Cuiqing, Sun Jingxin, Wu Xinhui, et al. Effects of high voltage electric field pretreatment on growth potential and yield of miscellaneous grain seeds [J]. Journal of Chinese Agricultural Machanization, 2022, 43 (8): 75-81.
[9] 高振东.物理农业植物种子处理的高压静电电源设计与制作[J]. 陇东学院学报, 2015,26(3): 18-21.
Gao Zhendong. Based on physical agricultural seed processing of high voltage electrostatic power supply design and production [J]. Journal of Longdong University, 2015, 26 (3): 18-21.
[10] 付喜锦. 物理农业种子高压充电电源设计与实现[J]. 陇东学院学报, 2016, 27(5): 40-43.Fu Xijin.Design and implementation of power plant seeds in high voltage charging [J]. Journal of Longdong University, 2016,27 (5): 40-43.
[11] 李嘉豪, 刘飞飞, 伍昕宇, 等. 面向猪舍环境的感知机器人系统和改进综合评价模型设计[J]. 东北农业大学学报, 2021, 52(11):67-79.
Li Jiahao, Liu Feifei, Wu Xinyu, et al.Design of aware robot system and improved comprehensive evaluation model for piggery environment [J]. Journal of Northeast Agricultural University, 2021, 52(11):67-79.
[12] Slabicki M, Premsankar G, et al. Adaptive configuration of LoRa networks for dense IoT deployments [C]. 2018 IEEE/IFIP Network Operations and Management Symposium, 2018: 1-9.
[13] 赵书祥. 基于LoRa的大气环境监测系统的设计[D]. 哈尔滨: 哈尔滨理工大学, 2020.
Zhao Shuxiang. Design of atmospheric environment monitoring system based on LoRa [D]. Harbin:Harbin University of Science and Technology, 2020.
[14] Finnegan J, Farrell R, Brown S. Analysis and enhancement of the LoRaWAN adaptive data rate scheme [J]. IEEE Internet of Things Journal, 2020, 7(8):7171-7180.
[15] Garlisi D, Tinnirello I, Bianchi G, et al. Capture aware sequential waterfilling for LoRaWAN adaptive data rate [J]. IEEE Transactions on Wireless Communications, 2020, 20(3): 2019-2033.
[16] Reynders B, Meert W, Pollin S. Power and spreading factor control in low power wide area networks [C]. IEEE International Conference on Communications. IEEE, 2017.
[17] 肖国宝. 基于LoRa的物联网无线通信网络研究与实现[D]. 广州: 暨南大学, 2019.Xiao Guobao. Research and implementation of IoT wireless communication network based on LoRa [D]. Guangzhou:Jinan University, 2019.
|