[ 1 ] 王蕾, 姜昭, 王磊, 等. 黑土区大豆耕地土壤障碍及其对策研究进展[J]. 大豆科技, 2022(1): 27-36.
Wang Lei, Jiang Zhao, Wang Lei, et al. Research progress on soil barriers and their countermeasures in soybean cropland in black soil area [J]. Soybean Science and Technology, 2022(1): 27-36.
[ 2 ] 申屠留芳, 刘涵, 吴旋, 等. 秸秆机械化还田技术及装备研究现状与展望[J]. 江苏农业科学, 2022, 50(15): 1-6.
Shentu Liufang, Liu Han, Wu Xuan, et al. Research status and prospect of mechanized straw return technology and equipment [J]. Jiangsu Agricultural Science, 2022, 50(15): 1-6.
[ 3 ] 刘海燕, 孙善文, 韩业辉, 等. 黑龙江省玉米秸秆还田现状及发展策略[J]. 中国种业, 2021(11): 20-22.
Liu Haiyan, Sun Shanwen, Han Yehui, et al. Status quo and development strategy of corn stover return to field in Heilongjiang Province [J]. China Seed Industry, 2021(11): 20-22.
[ 4 ] 王后升. 旋耕刀—埋指组合式秸秆还田机设计与试验[D]. 沈阳: 东北农业大学, 2023.
[ 5 ] 刘熙明, 王滢渺, 田洪涛, 等. 秸秆还田方式与施氮量对秸秆腐解及玉米氮素利用的影响[J]. 中国农业大学学报, 2023, 28(10): 15-26.
Liu Ximing, Wang Yingmiao, Tian Hongtao, et al. Effects of straw return method and nitrogen application on straw decomposition and corn nitrogen utilization [J]. Journal of China Agricultural University, 2023, 28(10): 15-26.
[ 6 ] 张清珠. 仿生几何结构表面土壤镇压辊[D]. 长春: 吉林大学, 2014.
[ 7 ] 刘宏俊. 东北丘陵地区播种机镇压装置关键技术研究[D]. 哈尔滨: 东北农业大学, 2019.
[ 8 ] 贾铭钰. 免耕播种机镇压装置的试验研究及计算机辅助设计[D]. 北京: 中国农业大学, 2000.
[ 9 ] 陈园胜. 液体腐熟剂变量喷施装置的设计与研究[D]. 武汉: 湖北工业大学, 2017.
[10] 吕世雄. 基于PLC的果园对靶喷药机控制系统设计[D]. 保定: 河北农业大学, 2021.
[11] Groeneveld D, Tekinerdogan B, Garousi V, et al. A domain‑specific language framework for farm management information systems in precision agriculture [J]. Precision Agriculture, 2021, 22(4): 1067-1106.
[12] Mohr S, Kühl R. Acceptance of artificial intelligence in German agriculture: An application of the technology acceptance model and the theory of planned behavior [J]. Precision Agriculture, 2021, 22(6): 1816-1844.
[13] Ammann J, Umstätter C, El Benni N. The adoption of precision agriculture enabling technologies in Swiss outdoor vegetable production: A Delphi study [J]. Precision Agriculture, 2022(23): 1354-1374.
[14] Nyéki A, Kerepesi C, Daróczy B, et al. Application of spatio‑temporal data in site‑specific maize yield prediction with machine learning methods [J]. Precision Agriculture, 2021, 22: 1397-1415.
[15] 李琪璐, 路彤, 李明宇, 等. 基于机器视觉的颜色分拣机器人设计[J]. 单片机与嵌入式系统应用, 2022, 22(12): 54-57.
Li Qilu, Lu Tong, Li Mingyu, et al. Design of colour sorting robot based on machine vision [J]. Microcontroller and Embedded System Applications, 2022, 22(12): 54-57.
[16] 何茜. 基于“机器视觉+深度学习”目标检测的皮革表面缺陷检测系统研究[J/OL]. 中国皮革: 1-5[2023-10-29].
[17] 熊平原, 杨洲, 孙志全, 等. 旋耕刀三向工作阻力试验及作业参数优化[J]. 农业工程学报, 2017, 33(19): 51-58.
Xiong Pingyuan, Yang Zhou, Sun Zhiquan, et al. Experiment on three‑direction working resistance of rotary cutter and optimization of operating parameters [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(19): 51-58.
[18] 贾洪雷, 汲文峰, 韩伟峰, 等. 旋耕-碎茬通用刀片结构参数优化试验[J]. 农业机械学报, 2009, 40(7): 45-50.
Jia Honglei, Ji Wenfeng, Han Weifeng, et al. Optimization test of structural parameters of rotary tillage‑stubble crushing blade [J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(7): 45-50.
[19] 刘东旭, 葛宜元, 杨传华, 等. 基于离散元法的还田弯刀—秸秆—土壤互作模型仿真与试验[J]. 中国农机化学报, 2022, 43(4): 1-6.
Liu Dongxu, Ge Yiyuan, Yang Chuanhua, et al. Simulation and experiment on the model of returned bentgrass‑straw‑soil interactions based on discrete element method [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(4): 1-6.
[20] 丁艳, 袁栋, 姚克恒, 等. 田间旋耕刀测试试验台设计与应用[J]. 中国农机化学报, 2018, 39(3): 6-10.
Ding Yan, Yuan Dong, Yao Keheng, et al. Design and application of field rotary plow knife test bench [J]. Journal of Chinese Agricultural Mechanization, 2018, 39(3): 6-10.
[21] 扈伟昊, 杨发展, 赵国栋, 等. 基于离散元法的立式旋耕刀工作参数分析与优化[J]. 中国农机化学报, 2022, 43(10): 25-32, 41.
Hu Weihao, Yang Fazhan, Zhao Guodong, et al. Analysis and optimization of working parameters of vertical rotary cutter based on discrete element method [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(10): 25-32, 41.
|