[1] Huang Xibei, Chen Aibin, Zhou Guoxiong, et al. Tomato leaf disease detection system based on FCSNDPN [J]. Multimedia Tools and Applications, 2023, 82(2): 2121-2144.
[2] 刘阗宇, 冯全, 杨森. 基于卷积神经网络的葡萄叶片病害检测方法[J]. 东北农业大学学报, 2018, 49(3): 73-83.
Liu Tianyu, Feng Quan, Yang Sen. Detecting grape diseases based on convolutional neural network [J]. Journal of Northeast Agricultural University, 2018, 49(3): 73-83.
[3] Amritha Haridasan, Jeena Thomas, Ebin Deniraj. Deep learning system for paddy plant disease detection and classification [J]. Environmental Monitoring and Assessment, 2023, 195(1): 120.
[4] Prabhjot Kaur, Shilpi Harnal, Vinay Gautam, et al. A novel transfer deep learning method for detection and classification of plant leaf disease [J]. Journal of Ambient Intelligence and Humanized Computing, 2023, 14(9): 12407-12424.
[5] 张梓婷, 韩金玉, 张东辉, 等. 基于颜色矩的土豆、玉米、苹果叶片病害异常检测[J]. 浙江农业学报, 2022, 34(10): 2230-2239.
Zhang Ziting, Han Jinyu, Zhang Donghui, et al. Anomaly detection of potato, maize and apple leaf diseases based on color moments [J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2230-2239.
[6] Chen Junde, Zhang Defu, Nanehkaran Yaser, et al. Detection of rice plant diseases based on deep transfer learning [J]. Journal of the Science of Food and Agriculture, 2020, 100(7): 3246-3256.
[7] 刘敏, 周丽. 基于多尺度特征融合网络的苹果病害叶片检测[J]. 中国农机化学报, 2023, 44(8): 184-190.
Liu Min, Zhou Li. Apple disease leaf detection based on multiscale feature fusion network [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(8): 184-190.
[8] 公徐路, 张淑娟. 基于改进YOLOv5s的苹果叶片小目标病害轻量化检测方法[J]. 农业工程学报, 2023, 39(19): 175-184.
Gong Xulu, Zhang Shujuan. Lightweight detection on small target diseases in apple leaf using improved YOLOv5s [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(19): 175-184.
[9] 曾晏林, 贺壹婷, 蔺瑶, 等. 基于BCE-YOLOv5的苹果叶部病害检测方法[J]. 江苏农业科学, 2023, 51(15): 155-163.
Zeng Yanlin, He Yiting, Lin Yao, et al. Apple leaf disease detection method based on BCE-YOLOv5 [J]. Jiangsu Agricultural Sciences, 2023, 51(15): 155-163.
[10] 赵嘉威, 田光兆, 邱畅, 等. 基于改进YOLOv4算法的苹果叶片病害检测方法[J]. 江苏农业科学, 2023, 51(9): 193-199.
Zhao Jiawei, Tian Guangzhao, Qiu Chang, et al. Apple leaf disease detection method based on improved YOLOv4 algorithm [J]. Jiangsu Agricultural Sciences, 2023, 51(9): 193-199.
[11] 孙长兰, 林海峰. 一种基于集成学习的苹果叶片病害检测方法[J]. 江苏农业科学, 2022, 50(20): 41-47.
Sun Changlan, Lin Haifeng. An apple leaf disease detection method based on ensemble learning [J]. Jiangsu Agricultural Sciences, 2022, 50(20): 41-47.
[12] 邢鹏康, 李久朋. 基于小样本学习的马铃薯叶片病害检[J]. 江苏农业科学, 2023, 51(15): 203-210.
Xing Pengkang, Li Jiupeng. Potato leaf disease detection based on fewshot learning [J]. Jiangsu Agricultural Sciences, 2023, 51(15): 203-210.
[13] 赵越, 赵辉, 姜永成, 等. 基于深度学习的马铃薯叶片病害检测方法[J]. 中国农机化学报, 2022, 43(10): 183-189.
Zhao Yue, Zhao Hui, Jiang Yongcheng, et al. Detection method of potato leaf diseases based on deep learning [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(10): 183-189.
[14] 章广传, 李彤, 何云, 等. 基于迁移模型集成的马铃薯叶片病害识别方法[J]. 江苏农业科学, 2023, 51(15): 216-224.
Zhang Guangchuan, Li Tong, He Yun, et al. Potato leaf disease recognition method based on ensemble of transfer learning models [J]. Jiangsu Agricultural Sciences, 2023, 51(15): 216-224.
[15] 储鑫, 李祥, 罗斌, 等. 基于改进YOLOv4算法的番茄叶部病害识别方法[J]. 江苏农业学报, 2023, 39(5): 1199-1208.
Chu Xin, Li Xiang, Luo Bin, et al. Tomato leaf disease recognition method based on improved YOLOv4 algorithm [J]. Jiangsu Agricultural Sciences, 2023, 39(5): 1199-1208.
[16] 蒋清健, 姚勇, 王亚玲, 等. 基于多尺度卷积神经网络算法的番茄叶片病害识别[J]. 江苏农业科学, 2023, 51(15): 211-216.
Jiang Qingjian, Yao Yong, Wang Yaling, et al. Tomato leaf disease recognition based on multiscale convolutional neural network algorithm [J]. Jiangsu Agricultural Sciences, 2023, 51(15): 211-216.
[17] 刘拥民, 刘翰林, 石婷婷, 等. 一种优化的Swin Transformer番茄叶片病害识别方法[J]. 中国农业大学学报, 2023, 28(4): 80-90.
Liu Yongmin, Liu Hanlin, Shi Tingting, et al. Tomato leaf disease recognition based on an optimized Swin Transformer [J]. Journal of China Agricultural University, 2023, 28(4): 80-90.
[18] Tiago Domingues, Brandao, Joao Ferreira. Machine learning for detection and prediction of crop diseases and pests: A comprehensive survey [J]. Agriculture, 2022, 12(9): 1350.
[19] Shahi Tejbahadur, Xu Chengyuan, Neupane Arjun, et al. Recent advances in crop disease detection using UAV and deep learning techniques [J]. Remote Sensing, 2023, 15(9): 2450.
[20] Chai Wenhao, Wang Gaoang. Deep vision multimodal learning: Methodology, benchmark, and trend [J]. Applied Sciences, 2022, 12(13): 6588.
[21] 陈智超, 汪国强, 李飞, 等. 基于Bi-LSTM与多尺度神经网络模型的番茄病害识别[J]. 江苏农业科学, 2023, 51(15): 194-203.
Chen Zhichao, Wang Guoqiang, Li Fei, et al. Tomato disease recognition based on Bi-LSTM and multiscale neural network models [J]. Jiangsu Agricultural Sciences, 2023, 51(15): 194-203.
|