English

中国农机化学报

中国农机化学报 ›› 2024, Vol. 45 ›› Issue (6): 142-148.DOI: 10.13733/j.jcam.issn.2095-5553.2024.06.022

• 农业信息化工程 • 上一篇    下一篇

基于激光点云的树木特征信息提取研究进展

张煜恒,周宏平   

  1. (南京林业大学机械与电子工程学院,南京市,210037)
  • 出版日期:2024-06-15 发布日期:2024-06-08
  • 基金资助:
    国家重点研发计划项目(2018YFD0600202)

Research progress of tree canopy feature information extraction based on laser point cloud

Zhang Yuheng, Zhou Hongping   

  1. (School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, 210037, China)
  • Online:2024-06-15 Published:2024-06-08

摘要:

树木的特征信息是进行农林业生产研究的重要参数,快速化提取信息对于农林业研究具有重要意义。因此,基于激光点云技术,综述国内外在树木信息提取的研究进展,重点从二维激光雷达、车载激光雷达、地基激光雷达三个方面总结研究现状。指出二维激光雷达通用性较差,户外采集困难;车载激光雷达数据精度较低,算法依赖严重;地基激光雷达数据运算量大等问题。提出快速处理算法的研究、数据集中复杂特征的剔除与修复、精准探测集成系统的研发与产品化等展望。为后续的基于点云技术的树木特征信息提取研究提供参考。

关键词: 树木特征提取, 无损测量, 激光雷达, 三维点云, 点云重建

Abstract:

The characteristic information of trees is an important parameter for the research of agroforestry production, and the rapid extraction of information is of great significance for the research of agro-forestry. Therefore, based on laser point cloud technology, the research progress for the extraction of tree feature information at home and abroad is reviewed, and the research status is summarized from  three aspects such as 2D LiDAR, vehicle-mounted LiDAR and ground-based LiDAR. At the same time, it is pointed out that the universality of 2D LiDAR  is poor and outdoor acquisition is difficult. The data accuracy of vehicle-mounted LiDAR is low and the algorithm method depends on serious ones. The ground-based LiDAR data calculation is extensive and computation time is lengthy.  Finally, the research of new rapid processing algorithms, the elimination and repair of complicated characteristics in datasets and the development and commercialization of integrated systems for precision detection are proposed, which provides reference for subsequent research on tree feature information extraction based on point cloud technology.

Key words: tree feature extraction, nondestructive measurement, LiDAR, 3D point cloud, point cloud reconstruction

中图分类号: