摘要: 为进一步提高野外火灾的识别率,提出三种森林火焰局部纹理提取算法:以16×16的像素邻域网格作为采样窗口,对Gabor滤波的不同尺度图像提取LBP局部纹理特征;对小波变换频率子图提取LBP局部纹理特征;对每一个16像素×16像素块提取灰度共生矩阵局部纹理特征,并将特征向量输入支持向量机(SVM)训练分类器,进行火灾火焰图像识别。试验结果显示,基于Gabor滤波和局部二值模式(LBP)的多尺度局部纹理特征提取算法的野外火灾火焰的识别率高达96%,因此,与基于小波变换和灰度共生矩阵分析的局部纹理特征提取的算法相比,该算法更为有效。
中图分类号:
冯丽琦;赵亚琴;孙一超;龚云荷;. 复杂环境下森林火灾火焰局部纹理提取方法[J]. 中国农机化学报, 2019, 40(7): 103-108.