[1]
李雯雯. 国家粮食和物资储备局:“十四五”统筹推进粮食安全治理体系和治理能力现代化[J]. 中国粮食经济, 2021, (05): 30-33.
[2]
郭利进, 王永旭. 基于XGBoost优化算法的储粮温度预测研究[J]. 粮食与油脂, 2022, 35(11): 78-82.
Guo
Lijin , Wang Yongxu. Research on prediction of stored grain temperature based
on XGBoost optimization algorithm[J]. Cereals & Oils, 2022, 35(11): 78-82.
[3]
黄琦兰, 王涛. 基于智能算法的储粮通风过程中温度场预测[J]. 保鲜与加工, 2022, 22 (03): 30-34.
Huang
Qilan, Wang Tao. Temperature field prediction of grain storage ventilation
process based on intelligent algorithm[J]. Storage and Process, 2022, 22(03):
30-34.
[4]
王赫, 曹毅, 李玉, 等. 基于改进粒子群算法的平房仓粮温BP神经网络预测模型建立[J]. 中国粮油学报, 2023, 38(06): 113-118.
Wang
He, Cao Yi, Li Yu, et al. Prediction model of grain temperature in warehouse
based on improved particle swarm optimization BP neural network [J]. Journal of the Chinese Cereals and Oils
Association, 2023, 38(06): 113-118.
[5] 苑江浩, 郑丹, 孟祥雪, 等. 粮情监测预警技术研究进展[J]. 中国粮油学报, 2022, 37(11): 19-26.
Yuan
Jianghao, Zheng Dan, Meng Xiangxue, et al. Research progress of grain
monitoring and early warning technology [J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(11): 19-26.
[6]
苑江浩, 常青, 李燕羽, 等. 神经网络在粮食储藏领域中的应用概述[J]. 中国粮油学报, 2021, 36(02): 155-161.
Yuan
Jianghao, Chang Qing, Li Yanyu, et al. Application of neural network in the
field of grain storage[J]. Journal of
the Chinese Cereals and Oils Association,
2021, 36(02): 155-161.
[7]
高松, 宋辉. 基于BP神经网络方法的高大平房仓温度场预测研究[J]. 粮油食品科技, 2015, 23(01): 94-97.
Gao
Song, Song Hui. Prediction of the temperature field of high & large
warehouse based on BP neural network[J]. Science and Technology of Cereals,Oils
and Foods, 2015, 23(01): 94-97.
[8]
冯鸿超. 基于温湿度粮情的储粮安全风险预警模型及应用[D]. 郑州:河南工业大学, 2019.
Feng Hongchao. Pre-warning model of stored grain safety risk
based on temperature and humidity and its application [D]. Zhengzhou: Henan University of
Technology, 2019.
[9]
蒋思玮, 孙妍, 陈静, 等. 改进粒子群优化GRU网络的储粮温度预测方法[J]. 计算机与数字工程, 2023, 51 (05): 1036-1041+1156.
Jiang
Siwei, Sun Yan, Chen Jing, et al. Grain storage temperature prediction method
based on GRU network optimized by improved particle swarm optimization[J].
Computer & Digital Engineering, 2023, 51 (05): 1036-1041+1156.
[10]
Xie Y, Zeng P, Chen J.
Hybrid attention-based improved temporal convolutional BiGRU approach for
short-term load forecasting[C]//Journal of Physics: Conference Series. IOP
Publishing, 2024, 2703(1): 012052.
[11]
Song Y, Luktarhan N,
Shi Z, et al. TGA: a novel network intrusion detection method based on TCN,
BiGRU and attention mechanism[J]. Electronics, 2023, 12(13): 2849.
[12]
Limouni T, Yaagoubi R,
Bouziane K, et al. Accurate one step and multistep forecasting of very
short-term PV power using LSTM-TCN model[J]. Renewable Energy, 2023, 205:
1010-1024.
[13]
吴晓丹, 范波, 王建祥, 等. 基于VMD-TCN-Attention的锂电池寿命预测[J]. 电源技术, 2023, 47 (10): 1319-1325.
Wu
Xiaodan, Fanbo, Wang jianxiang Life prediction of lithium battery based on
VMD-TCN-Attention[J]. Chinese Journal of Power Sources, 2023, 47 (10): 1319-1325.
[14]
Yang L, Wang S, Chen X,
et al. High-fidelity permeability and porosity prediction using deep learning
with the self-attention mechanism[J]. IEEE Transactions on Neural Networks and
Learning Systems, 2022, 34 (7):3429 - 3443.
[15]
刘森, 刘美, 贺银超, 等. 基于DCNN网络及Self-Attention-BiGRU机制的轴承剩余寿命预测[J]. 机电工程, 2024, 41 (05):
786-796.
Liu
Sen, Liu Mei, He Yinchao, et al. Residual life prediction of bearings based on
DCNN network and Self-Attention-BiGRU mechanism[J]. Journal of Mechanical &
Electrical Engineering, 2024, 41 (05): 786-796.
[16]
Zhao Z, Yun S, Jia L,
et al. Hybrid VMD-CNN-GRU-based model for short-term forecasting of wind power
considering spatio-temporal features[J]. Engineering Applications of Artificial
Intelligence, 2023, 121: 105982.
[17]
Mahjoub S,
Chrifi-Alaoui L, Marhic B, et al. Predicting energy consumption using LSTM,
multi-layer GRU and drop-GRU neural networks[J]. Sensors, 2022, 22(11): 4062.
[18]
Zhang Y, Zhang L, Sun
D, et al. Short-Term Wind Power Forecasting Based on VMD and a Hybrid
SSA-TCN-BiGRU Network[J]. Applied Sciences, 2023, 13(17): 9888.
[19]
邹智, 吴铁洲, 张晓星, 等. 基于贝叶斯优化CNN-BiGRU混合神经网络的短期负荷预测[J]. 高电压技术, 2022, 48 (10):
3935-3945.
Zou
Zhi, Wu Tiezhou, Zhang Xiaoxing, et al. Short-term load forecast based on
bayesian optimized CNN-BiGRU hybrid neural networks[J]. High Voltage
Engineering, 2022, 48 (10): 3935-3945.
[20]
张明跃, 周慧玲, 钱荣荣, 等. 粮堆温度预测插值算法的研究[J]. 中国粮油学报, 2021, 36(12): 136-143.
Zhang
Mengyue, Zhou Huiling, Qian Rongrong, et al. Prediction and interpolation
algorithm of temperature of grain bulk[J]. Journal of the Chinese Cereals and
Oils Association, 2021, 36(12): 136-143.
[21]
Lin Z, Yue W, Huang J,
et al. Ship trajectory prediction based on the TTCN-attention-GRU model[J].
Electronics, 2023, 12(12): 2556.
[22] 倪凌. 基于双向长短期记忆网络的医院电子病历数据挖掘[J]. 计算机应用与软件, 2023, 40(06): 70-76.
Ni
Ling. Data mining for electronic medical records of hospital based on
Bidirectional long short term memory network[J]. Computer Applications and
Software, 2023, 40(06): 70-76.
|