中国农机化学报 ›› 2022, Vol. 43 ›› Issue (9): 63-72.DOI: 10.13733/j.jcam.issn.20955553.2022.09.009
代志伟,程曼,袁洪波,蔡振江
出版日期:
2022-09-15
发布日期:
2022-08-16
基金资助:
Dai Zhiwei, Cheng Man, Yuan Hongbo, Cai Zhenjiang.#br#
Online:
2022-09-15
Published:
2022-08-16
摘要: 灌溉是温室生产中的一个重要环节,不合理的灌溉控制方法会造成水资源的浪费。通过对温室灌溉控制策略的发展和应用情况进行综述,从基于蒸腾模型、土壤/基质湿度传感器、作物特性3个方面阐述当前温室生产中灌溉控制策略的研究进展。针对用于制定灌溉控制策略的不同蒸腾模型分析对比各自优缺点和适用条件;针对常见湿度传感器,分析其测量原理并讨论具体应用;从形态学和生理两个角度对基于作物特性的灌溉控制测量进行分类讨论。最后,对当前温室灌溉控制策略从控制策略融合度、灌溉控制策略与灌溉控制装备匹配度和泛化性以及普适性方面进行总结和展望,通过分析展望发现土壤水分传感器和植物信息传感器很有发展前景。在未来的发展中,灌溉控制策略与灌溉控制装备的发展将会不断交互融合,温室节水灌溉控制技术的发展趋势必定向着更高效、更简便以及更智能化的方向发展。
中图分类号:
代志伟, 程曼, 袁洪波, 蔡振江. 温室灌溉控制策略研究进展[J]. 中国农机化学报, 2022, 43(9): 63-72.
Dai Zhiwei, Cheng Man, Yuan Hongbo, Cai Zhenjiang.. Review of irrigation control strategy for greenhouse[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(9): 63-72.
[1] 王宇. 农业用水现状及节水措施探讨[J]. 现代农业科技, 2021(4): 151-152. [2] 金宏智, 严海军, 钱一超. 国外节水灌溉工程技术发展分析[J]. 农业机械学报, 2010, 41(S1): 59-63. Jin Hongzhi, Yan Haijun, Qian Yichao. Overseas development of watersaving irrigation engineering technology [J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(S1): 59-63. [3] 廖建尚. 基于物联网的温室大棚环境监控系统设计方法[J]. 农业工程学报, 2016, 32(11): 233-243. Liao Jianshang. Design of agricultural greenhouse environment monitoring system based on Internet of Things [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(11): 233-243. [4] Abioye E A, Abidin M, Mahmud M, et al. A review on monitoring and advanced control strategies for precision irrigation [J]. Computers and Electronics in Agriculture, 2020, 173: 105441. [5] 侯晓奎, 李元应. 设施园艺中节水灌溉研究——评《节水灌溉技术》[J]. 灌溉排水学报, 2020, 39(6): 147-148. [6] 於沈刚, 马明舟, 岳雪峰, 等. 模糊PID智能灌溉控制器的设计及MATLAB仿真[J]. 节水灌溉, 2018(5): 86-89. Yu Shengang, Ma Mingzhou, Yue Xuefeng, et al. Design and MATLAB simulation of intelligent irrigation controller based on Fuzzy PID algorithm [J]. Water Saving Irrigation, 2018(5): 86-89. [7] 李惠, 梁杏, 刘延锋. 干旱区膜下滴灌棉田SPAC系统水分通量模拟[J]. 水文地质工程地质, 2018, 45(2): 21-28. Li Hui, Liang Xing, Liu Yanfeng. Simulation of water flux of SPAC continuum in a cotton field under mulched drip irrigation in an arid area [J]. Hydrogeology & Engineering Geology, 2018, 45(2): 21-28. [8] H Yan, Zhang C, Miriam C G, et al. Parametrization of aerodynamic and canopy resistances for modeling evapotranspiration of greenhouse cucumber [J]. Agricultural and Forest Meteorology, 2018, 262: 370-378. [9] 李建明, 樊翔宇, 闫芳芳, 等. 基于蒸腾模型决策的灌溉量对甜瓜产量及品质的影响[J]. 农业工程学报, 2017, 33(21): 156-162. Li Jianming, Fan Xiangyu, Yan Fangfang, et al. Effect of different irrigation amount based on transpiration model on yield and quality of muskmelon [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(21): 156-162. [10] 刘浩, 段爱旺, 孙景生, 等. 温室番茄节水调质灌水方案评价[J]. 排灌机械工程学报, 2014, 32(6): 529-534, 540. Liu Hao, Duan Aiwang, Sun Jingsheng, et al. Evaluation of irrigation scheme with high quality and efficiency for greenhouse grown tomato [J]. Journal of Drainage and Irrigation Machinery Engineering, 2014, 32(6): 529-534, 540. [11] 赵颖, 纪建伟, 崔会坤, 等. 基于作物蒸散量模型的新型滑盖温室智能灌溉系统设计[J]. 节水灌溉, 2017(8): 83-87, 91. Zhao Ying, Ji Jianwei, Cui Huikun, et al. Design of a new type intelligent irrigation system based on crop evapotranspiration model [J]. Water Saving Irrigation, 2017(8): 83-87, 91. [12] Kool D, Agam N, Lazarovitch N, et al. A review of approaches for evapotranspiration partitioning [J]. Agricultural and Forest Meteorology, 2014, 184(1): 56-70. [13] 樊引琴, 蔡焕杰. 单作物系数法和双作物系数法计算作物需水量的比较研究[J]. 水利学报, 2002(3): 50-54. Fan Yinqin, Cai Huanjie. Comparison of crop water requirements computed by single crop coefficient approach and dual crop coefficient approach [J]. Journal of Hydraulic Engineering, 2002(3): 50-54. [14] 卢晓鹏, 段顺琼, 马显莹, 等. 单双作物系数法计算玉米需水量的对比研究[J]. 节水灌溉, 2012(11): 18-21. Lu Xiaopeng, Duan Shunqiong, Ma Xianying, et al. A comparative study between single crop coefficient method in calculation of water requirement of maize [J]. Water Saving Irrigation, 2012(11): 18-21. [15] 龚雪文, 刘浩, 孙景生, 等. 基于双作物系数法估算不同水分条件下温室番茄蒸发蒸腾量[J]. 应用生态学报, 2017, 28(4): 1255-1264. Gong Xuewen, Liu Hao, Sun Jingsheng, et al. Modeling evapotranspiration of greenhouse tomato under different water conditions based on the dual crop coefficient method [J]. Chinese Journal of Applied Ecology, 2017, 28(4): 1255-1264. [16] Huang S, H Yan, Zhang C, et al. Modeling evapotranspiration for cucumber plants based on the ShuttleworthWallace model in a Venlotype greenhouse [J]. Agricultural Water Management, 2019, 228: 105861. [17] Gong X, Liu H, Sun J, et al. Comparison of ShuttleworthWallace model and dual crop coefficient method for estimating evapotranspiration of tomato cultivated in a solar greenhouse [J]. Agricultural Water Management, 2019, 217: 141-153. [18] 刘浩, 孙景生, 梁媛媛, 等. 滴灌条件下温室番茄需水量估算模型[J]. 应用生态学报, 2011, 22(5): 1201-1206. Liu Hao, Sun Jingsheng, Liang Yuanyuan, et al. Estimation model for water requirement of greenhouse tomato under drip irrigation [J]. Chinese Journal of Applied Ecology, 2011, 22(5): 1201-1206. [19] 刘浩, 段爱旺, 孙景生, 等. 基于PenmanMonteith方程的日光温室番茄蒸腾量估算模型[J]. 农业工程学报, 2011, 27(9): 208-213. Liu Hao, Duan Aiwang, Sun Jingsheng, et al. Estimating model of transpiration for greenhouse tomato based on Penman Monteith equation [J]. Transactions of the CSAE, 2011, 27(9): 208-213. [20] 罗卫红, 汪小旵, 戴剑峰, 等. 南方现代化温室黄瓜冬季蒸腾测量与模拟研究[J]. 植物生态学报, 2004, 28(1): 59-65. Luo Weihong, Wang Xiaohan, Dai Jianfeng, et al. Measurement and simulation of cucumber canopy transpiration in a subtropical modern greenhouse under winter climate conditions [J]. Acta Phytoecologica Sinica, 2004, 28(1): 59-65. [21] 闫浩芳, 毋海梅, 张川, 等. 基于修正双作物系数模型估算温室黄瓜不同季节腾发量[J]. 农业工程学报, 2018, 34(15): 117-125. Yan Haofang, Wu Haimei, Zhang Chuan, et al. Estimation of greenhouse cucumber evapotranspiration in different seasons based on modified dual crop coefficient model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(15): 117-125. [22] Jo W J, Shin J H. Development of a transpiration model for precise tomato (Solanum lycopersicum L.) irrigation control under various environmental conditions in greenhouse [J]. Plant Physiology and Biochemistry, 2021, 162. [23] 戴剑锋, 金亮, 罗卫红, 等. 长江中下游Venlo型温室番茄蒸腾模拟研究[J]. 农业工程学报, 2006, 22(3): 99-103. Dai Jianfeng, Jin Liang, Luo Weihong, et al. Simulation of greenhouse tomato canopy transpiration in Yangtze River Delta [J]. Transactions of the CSAE, 2006, 22(3): 99-103. [24] 袁洪波, 李莉, 王海华, 等. 温室封闭式栽培自适应灌溉方法[J]. 农业工程学报, 2015, 31(22): 222-228. Yuan Hongbo, Li Li, Wang Haihua, et al. Adaptive irrigation method for closed cultivation in greenhouse [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(22): 222-228. [25] Eslamian S, AbediKoupai J, Zareian M J. Measurement and modelling of the water requirement of some greenhouse crops with artificial neural networks and genetic algorithm [J]. International Journal of Hydrology Science and Technology, 2012, 2(3): 237-251. [26] Iersel M, Chappell M, LeaCox J D. Sensors for improved efficiency of irrigation in greenhouse and nursery production [J]. HortTechnology, 2013, 12(6): 735-746. [27] Montesano, F, F, et al. Timer versus moisture sensorbased irrigation control of soilless lettuce: Effects on yield, quality and water use efficiency [J]. Horticultural Science, 2016, 43(2): 67-75. [28] 杨文治, 邵明安. 黄土高原土壤水分研究[M]. 北京: 科学出版社, 2000. [29] 李旺霞, 陈彦云. 土壤水分及其测量方法的研究进展[J]. 江苏农业科学, 2014, 42(10): 335-339. [30] 曹巧红. 土壤因子对时域反射仪测定含水量的影响土壤因子对时域反射仪测定含水量的影响[D]. 北京: 中国农业大学, 1999. [31] Topp G C, Davis J L, Annan A P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines [J]. Water Resources Research, 1980, 16(3): 574-582. [32] 李杰, 陈慧丽. 基于语音识别和PLC的温室智能灌溉控制系统设计[J]. 中国农机化学报, 2019, 40(9): 66-71. Li Jie, Chen Huili. Design of greenhouse Intelligent Irrigation Control System Based on Speech recognition and PLC [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(9): 66-71. [33] 韩晨燕, 封维忠, 施山菁, 等. 基于FDR原理的土壤湿度实时监控灌溉系统[J]. 节水灌溉, 2012(2): 75-77. [34] 宋志勇. 基于Zigbee的土壤水分测量系统设计[J]. 中国仪器仪表, 2020(12): 84-92. Song Zhiyong. Design of high precise weighing acquisition system based on Zigbee [J]. China Instrumentation, 2020(12): 84-92. [35] Incrocci L, Marzialetti P, Incrocci G, et al. Application of wet sensor for management of reclaimed wastewater irrigation in containergrown ornamentals (Prunus laurocerasus L.) [J]. American Journal of Diseases of Children, 2010. [36] Montesano F F, Iersel M V, Boari F, et al. Sensorbased irrigation management of soilless basil using a new smart irrigation system: Effects of setpoint on plant physiological responses and crop performance [J]. Agricultural Water Management, 2018, 203: 20-29. [37] 唐玉邦, 何志刚, 虞利俊, 等. 土壤水分传感器(FDR)在作物精准灌溉中的标定与应用[J]. 江苏农业科学, 2014, 42(4): 343-344. [38] Sl S U, Singh D N, Baghini M S. A critical review of soil moisture measurement [J]. Measurement, 2014, 54: 92-105. [39] 常丹, 李旭, 刘建坤, 等. 土体含水率测量方法研究进展及比较[J]. 工程勘察, 2014, 42(9): 17-22, 35. Chang Dan, Li Xu, Liu Jiankun, et al. Study progress and comparison of soil moisture content measurement methods [J]. Geotechnical Investigation & Surveying, 2014, 42(9): 17-22, 35. [40] 李加念, 洪添胜, 冯瑞珏, 等. 基于真有效值检测的高频电容式土壤水分传感器[J]. 农业工程学报, 2011, 27(8): 216-221. Li Jianian, Hong Tiansheng, Feng Ruijue, et al. Highfrequency capacitive soil water content sensor based on detecting of true root mean square [J]. Transactions of the CSAE, 2011, 27(8): 216-221. [41] An S K, Lee H B, Kim J, et al. Soil moisture sensorbased automated irrigation of Cymbidium under various substrate conditions [J]. Scientia Horticulturae, 2021, 286(Suppl. 2): 110133. [42] 谭燕, 秦风元. 基于Raspberry Pi的室内智能灌溉系统设计与研究[J]. 节水灌溉, 2019(7): 105-108, 113. Tan Yan, Qin Fengyuan. Design and research of indoor intelligent irrigation system based on Raspberry Pi [J]. Water Saving Irrigation, 2019(7): 105-108, 113. [43] Ferrarezi R S, Dove S K, Iersel M. An automated system for monitoring soil moisture and controlling irrigation using lowcost opensource microcontrollers [J]. HortTechnology, 2015, 25(1): 110-118. [44] 王利恒, 刘思敏, 龚泽熙. 基于交流阻抗法的土壤湿度测量[J]. 武汉工程大学学报, 2016, 38(1): 74-77. Wang Liheng, Liu Simin, Gong Zexi. Measuring soil moisture based on alternating current impedance method [J]. Journal of Wuhan Institute of Technology, 2016, 38(1): 74-77. [45] 伍群芳, 赖建英, 刁心宏. 基于STM32的土壤含水量传感器阻抗测量仪的研制[J]. 华东交通大学学报, 2013, 30(2): 52-57. [46] 赵强. 草莓大棚光照及温湿度无线监控系统设计[D]. 保定: 河北大学, 2016. Zhao Qiang. The design of wireless monitoring system for illumination temperature and humidity of strawberry greenhouse [D]. Baoding: Hebei University, 2016. [47] Rao R N, Sridhar B. IoT based smart cropfield monitoring and automation irrigation system [C]. 2018: 478-483. [48] Kothawade S N, Furkhan S M, Raoof A, et al. Efficient water management for greenland using soil moisture sensor [C]. IEEE International Conference on Power Electronics. IEEE, 2016. [49] 吴沿友, 胡林生, 谷睿智, 等. 两种土壤含水量与水势关系[J]. 排灌机械工程学报, 2017, 35(4): 351-356. Wu Yanyou, Hu Linsheng, Gu Ruizhi, et al. Relationship between soil water potential and water content of two soils [J]. Journal of Drainage and Irrigation Machinery Engineering, 2017, 35(4): 351-356. [50] 马中昇. 土壤基质势对压砂地土壤水盐分布特征及西瓜产量和品质的影响研究[D]. 银川: 宁夏大学, 2019. Ma Zhongsheng. Effects of soil matrix potential on soil water and salt distribution and yield and fruit quality of watermelon in gravelmulched field [D]. Yinchuan: Ningxia University, 2019. [51] 窦超银, 吕国华. 土壤水势控制在农业灌溉应用中的研究进展[J]. 节水灌溉, 2013(2): 56-59. Dou Chaoyin, Lu Guohua. Advance of research on application of soil water potential (SWP) in irrigation scheduling [J]. Water Saving Irrigation, 2013(2): 56-59. [52] 杜太行, 邹军军, 孙曙光, 等. 设施蔬菜智能灌溉控制系统的设计[J]. 节水灌溉, 2020(2): 92-95. Du Taihang, Zou Junjun, Sun Shuguang, et al. Design of intelligent irrigation control system for facility vegetable [J]. Water Saving Irrigation, 2020(2): 92-95. [53] Contreras J I, Alonso F, G Cánovas, et al. Irrigation management of greenhouse zucchini with different soil matric potential level. Agronomic and environmental effects [J]. Agricultural Water Management, 2017, 183: 26-34. [54] Montesano F F, Francesco S, Carlo M, et al. Tensiometerbased irrigation management of subirrigated soilless tomato: Effects of substrate matric potential control on crop performance [J]. Frontiers in Plant Science, 2015, 6: 1150. [55] 李秧秧, 王全九. 几种基于植物生理活动的节水灌溉指标研究进展[J]. 节水灌溉, 2009(2): 32-35. [56] 张新. 植物生命需水状况实时在线智能检测方法研究[D]. 北京: 北京林业大学, 2017. Zhang Xin. Research on real time online and intelligent detection measurement of plant water content [D]. Beijing: Beijing Forestry University, 2017. [57] Seelig H D, Stoner R J, Linden J C. Irrigation control of cowpea plants using the measurement of leaf thickness under greenhouse conditions [J]. Irrigation Science, 2012, 30(4): 247-257. [58] 赵燕东, 高超, 张新, 等. 植物水分胁迫实时在线检测方法研究进展[J]. 农业机械学报, 2016, 47(7): 290-300. Zhao Yandong, Gao Chao, Zhang Xin, et al. Review of realtime detecting methods of water stress for plants [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(7): 290-300. [59] 雷水玲, 孙忠富, 雷廷武. 温室内作物茎秆直径变化对基质含水率的响应[J]. 农业工程学报, 2005, 21(7): 116-119. Lei Shuiling, Sun Zhongfu, Lei Tingwu. Response of stem diameter of vegetable crops to soil moisture in greenhouse [J]. Transactions of the CSAE, 2005, 21(7): 116-119. [60] Guo Y. Signal intensity of stem diameter variation for the diagnosis of drip irrigation water deficit in grapevine [J]. Horticulturae, 2021, 7(6): 154-154. [61] 杨再强, 张婷华, 李永秀, 等. 不同水分胁迫条件下温室番茄茎流和叶片水势的反应[J]. 中国农业气象, 2012, 33(3): 382-387. Yang Zaiqiang, Zhang Tinghua, Li Yongxiu, et al. Response of sap flow and leaf water potential for greenhouse tomato under moisture stress [J]. Chinese Journal of Agrometeorology, 2012, 33(3): 382-387. [62] 刘德慧. 温室黄瓜水分亏缺诊断诊断与节水灌溉的研究[D]. 长春: 吉林大学, 2005. Liu Dehui. Study on water stress diagnosis and irrigation of cucumber in the greenhouse [D]. Changchun: Jilin University, 2005. [63] 鲍一丹, 沈杰辉. 基于叶片电特性和叶水势的植物缺水度研究[J]. 浙江大学学报(农业与生命科学版), 2005, 31(3): 341-345. Bao Yidan, Shen Jiehui. Study of plant water lack message based on electric property and water potential of leaf [J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2005, 31(3): 341-345. [64] Kim M, Kim S, Kim Y, et al. Infrared estimation of canopy temperature as crop water stress indicator [J]. Korean Journal Of Soil Science And Fertilizer, 2015, 48(5): 499-504. [65] 钟钢. 国内外温室发展历程、现状及趋势[J]. 农业科技与装备, 2013(9): 68-69. Zhong Gang. Development status and trend of domestic and overseas greenhouse [J]. Agricultural Science & Technology and Equipment, 2013(9): 68-69. |
[1] | 李雪峰, , 李涛, 邱权, 樊正强, 孙娜. 果园移动机器人自主导航研究进展[J]. 中国农机化学报, 2022, 43(5): 156-164. |
[2] | 杨杭旭, 刘冬梅, 周俊, 汪珍珍, 王旭. 增程式电动拖拉机研究进展[J]. 中国农机化学报, 2022, 43(11): 118-125. |
[3] | 王晓阳;袁春元;吴鹤鹤;王传晓;. 附加气室容积可调式空气悬架分层控制研究[J]. 中国农机化学报, 2019, 40(8): 109-115. |
[4] | 胡卫;秦永法;曾励;张持;. 前驱式纯电动汽车制动能量回收控制策略研究[J]. 中国农机化学报, 2019, 40(8): 116-121. |
[5] | 夏光;郭东云;唐希雯;汪韶杰;孙保群;. 基于滑磨功的大功率拖拉机动力升挡控制研究[J]. 中国农机化学报, 2019, 40(1): 77-84. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《中国农机化学报 》编辑部
地址:南京市玄武区中山门外柳营100号 邮编: Tel: 025-84346270,84346296