[1] 蒋荷, 李旭, 郑慧慧, 等. 黄瓜种传镰刀菌种类的鉴定及其致病性研究[J]. 中国农业大学学报, 2013, 18(2): 86-92.
Jiang He, Li Xu, Zheng Huihui, et al. Study on identification of cucumber seed borne Fusarium species and testing of their pathogenicity [J]. Journal of China Agricultural University, 2013, 18(2): 86-92.
[2] VillaRojas R, Tang J, Wang S, et al. Thermal inactivation of salmonella enteritidis PT 30 in almond kernels as influenced by water activity [J]. Journal of food protection, 2013, 76(1): 26-32.
[3] Yuk H G, Geveke D J, Zhang H Q, et al. Comparison of aluminum thermaldeathtime disks with a pilotscale pasteurizer on the thermal inactivation of Escherichia coli K12 in apple cider [J]. Food Control, 2009, 20(11): 1053-1057.
[4] Chung, H.J, Birla, et al. Performance evaluation of aluminum test cell designed for determining the heat resistance of bacterial spores in foods [J]. LWTFood Science and Technology, 2008, 41(8): 1351-1359.
[5] Jin T, Zhang H, Boyd G, et al. Thermal resistance of Salmonella enteritidis and Escherichia coli K12 in liquid egg determined by thermaldeathtime disks [J]. Journal of Food Engineering, 2008, 84(4): 608-614.
[6] Lee S Y, Kang D H. Combined effects of heat, acetic acid, and salt for inactivating Escherichia coli O157: H7 in laboratory media [J]. Food Control, 2009, 20(11): 1006-1012.
[7] AlHoly M, Quinde Z, D Guan, et al. Thermal inactivation of Listeria innocua in salmon (Oncorhynchus keta) caviar using conventional glass and novel aluminum thermaldeathtime tubes [J]. Journal of Food Protection, 2004, 67(2): 383-386.
[8] Christin Büchner, Thomas S, Jaros D, et al. Fastresponding thermaldeathtime tubes for the determination of thermal bacteria inactivation [J]. Engineering in Life Sciences, 2012, 12(1): 109-112.
[9] OBryan C A, Crandall P G, Martin E M, et al. Heat Resistance of Salmonella spp. Listeria monocytogenes, Escherichia coli 0157:H7, and Listeria innocua M1, a Potential Surrogate for Listeria monocytogenes, in Meat and Poultry: A review [J]. Journal of Food Science, 2006, 71(3): R23-R30.
[10] Tang J, Ikediala J N, Wang S, et al. Hightemperatureshorttime thermal quarantine methods [J]. Postharvest Biology & Technology, 2000, 21(1): 129-145.
[11] Chung H, Wang S, Tang J. Influence of heat transfer with tube methods on measured thermal inactivation parameters for Escherichia coli [J]. Journal of Food Protection, 2007, 70(4): 851-859.
[12] Li R, Shi Y, Ling B, et al. Thermotolerance and heat shock protein of Escherichia coli ATCC 25922 under thermal stress using test cell method [J]. Emirates Journal of Food & Agriculture (EJFA), 2017, 29(2): 91-97.
[13] Lee S Y, Kang D H. Combined effects of heat, acetic acid, and salt for inactivating Escherichia coli O157:H7 in laboratory media [J]. Food Control, 2009, 20(11): 1006-1012.
[14] 郭文川, 杨沉陈, 赵志翔, 等. 基于AVR单片机的害虫耐热性试验装置设计[J]. 农业机械学报, 2012, 43(6): 183-187.
Guo Wenchuan, Yang Chenchen, Zhao Zhixiang, et al. Testing equipment design of thermal resistant characteristics for pests based on AVR singlechip microcomputer [J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(6): 183-187.
[15] 李瑞, 王绍金. 用于研究害虫热致死动力学的加热板系统研制[J]. 实验技术与管理, 2015, 32(8): 94-96.
Li Rui, Wang Shaojin. Heating block system for studying thermal death kinetics of insect pests [J]. Experimental Technology and Management, 2015, 32(8): 94-96.
[16] 李瑞, 王绍金. 快速评估害虫热特性的气调加热板系统[J]. 实验技术与管理, 2015, 32(11): 105-107, 112.
Li Rui, Wang Shaojin. Controlled atmosphere/heating block systems for quickly assessing insect thermotolerance [J]. Experimental Technology and Management, 2015, 32(11): 105-107, 112.
[17] Kou X X, Li R, Hou L X, et al. Performance of a heating block system designed for studying the heat resistance of bacteria in foods [J]. Rep, 2016, 6(1): 30758.
[18] Kou X X, Li R, Hou L et al. Evaluation of a heating block system for accurate temperaturetime controlled pasteurization treatments on various foods [J]. International Journal of Agricultural and Biological Engineering, 2018, 11(3): 220-228.
[19] 李瑞, 寇小希, 王绍金. 用于研究微生物热致死动力学的可控加热速率的加热板系统[J]. 实验技术与管理, 2016, 33(11): 99-101.
Li Rui, Kou Xiaoxi, Wang Shaojin. Controlled heating rate/heating block systems for studying thermal death kinetics of microbiology [J]. Experimental Technology and Management, 2016, 33(11): 99-101.
[20] 寇小希. 微生物热致死性能测试系统及射频灭菌效应研究 [D]. 咸阳: 西北农林科技大学, 2019.
Kou Xiaoxi. Experimental systems for determining thermal death characteristics of pathogens and effects of radio frequency heating on pasteurization [D]. Xianyang: Northwest A & F University, 2019.
[21] Ikediala J N, Tang J, Wig T. A heating block system for studying thermal death kinetics of insect pests [J]. Transactions of the ASAE, 2000, 43(2): 351-358.
[22] Wang S, Tang J, Cavalieri R P. Modeling fruit internal heating rates for hot air and hot water treatments [J]. Postharvest Biology & Technology, 2001, 22(3): 257-270.
[23] Luechapattanaporn K, Wang Y, Wang J, et al. Microbial safety in radiofrequency processing of packaged foods [J]. Journal of Food Science, 2004, 69(7): 201-206.
[24] A Y L, B J T, A Z M, et al. Quality and mold control of enriched white bread by combined radio frequency and hot air treatment [J]. Journal of Food Engineering, 2011, 104(4): 492-498.
[25] Wang Y, Li Z, Johnson J, et al. Developing hot airassisted radio frequency drying for inshell macadamia nuts [J]. Food & Bioprocess Technology, 2014, 7(1): 278-288.
[26] Ikediala J N, Tang J, Wig T. Ah eating block system for studying thermal death kinetics of insect pests [J]. Transactions of the Asae, 2000, 43(2): 351-358.
[27] Wang S, Ikediala J N, Tang J, et al. Thermal death kinetics and heating rate effects for fifthinstar Cydia pomonella (L.) (Lepidoptera: Tortricidae) [J]. Journal of Stored Products Research, 2002, 38(5): 441-453.
[28] Wang S, Tang J, Johnson J A, et al. Thermaldeath kinetics of fifthinstar Amyelois transitella (Walker) (Lepidoptera: Pyralidae) [J]. Journal of Stored Products Research, 2002, 38(5): 427-440.
|