[ 1 ] 辛翔飞, 王秀东, 王济民. 新时代下的中国粮食安全: 意义、挑战和对策. 中国农业资源与区划[J], 2021, 42(3): 76-84.
[ 2 ] Jia Gensuo, Shevliakova E, Artaxo P, et al. Land‑climate interactions. IPCC special report on climate change and land [EB/OL]. https: //www. ipcc. ch/srccl/chapter/chapter-2/, 2019-04-16.
[ 3 ] 赵春江. 智慧农业的发展现状与未来展望[J]. 中国农业文摘—农业工程, 2021, 33(6): 4-8.
[ 4 ] Sishodia R P, Ray R L, Singh S K. Applications of remote sensing in precision agriculture: A review [J]. Remote Sensing, 2020, 12(19): 3136.
[ 5 ] 王利民, 刘佳, 季富华. 中国农业遥感技术应用现状及发展趋势[J]. 中国农学通报, 2021, 37(25): 138-143.
[ 6 ] 刘海启, 游炯, 王飞, 等. 欧盟国家农业遥感应用及其启示[J]. 中国农业资源与区划, 2018, 39(8): 280-287.
[ 7 ] Astrand P, Wirnhardt C, Biagini B, et al. Controls with remote sensing of common agricultural policy (CAP) arable‑and forage‑area‑based subsidies: A yearly more than 700—image and 3—M euro affair [J]. Proc Spie, 2004: 577-588.
[ 8 ] Rajendran K, Tester M, Roy S J. Quantifying the three main components of salinity tolerance in cereals [J]. Plant, Cell & Environment, 2009, 32(3): 237-49.
[ 9 ] Berger B, Parent B, Tester M. High‑throughput shoot imaging to study drought responses [J]. Journal of Experimental Botany, 2010, 61(13): 3519-3528.
[10] Schnurbusch T, Hayes J, Sutton T. Boron toxicity tolerance in wheat and barley: Australian perspectives [J]. Breeding Science, 2010, 60(4): 297-304.
[11] Golzarian M, Frick R, Rajendran K, et al. Accurate inference of shoot biomass from high‑throughput images of cereal plants [J]. Plant Methods, 2011, 7: 1-11.
[12] White J W, Andrade‑Sanchez P, Gore M A, et al. Field‑based phenomics for plant genetics research [J]. Field Crops Research, 2012, 133: 101-112.
[13] 钱永兰, 侯英雨, 延昊, 等. 基于遥感的国外作物长势监测与产量趋势估计[J]. 农业工程学报, 2012, 28(13): 166-171.
Qian Yonglan, Hou Yingyu, Yan Hao, et al. Monitoring of crop growth and yield trend estimation of foreign crops based on remote sensing [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(13): 166-171.
[14] 任建强, 陈仲新, 周清波, 等. MODIS植被指数的美国玉米单产遥感估测[J]. 遥感学报, 2015, 19(4): 568-577.
[15] 李传荣, 刘照言, 王新鸿, 等. 国家级遥感技术标准体系逐步完善[J]. 卫星应用, 2021(6): 16-20.
[16] Walter A. Advances in plant phenotyping for more sustainable crop production [M]. Burleigh Dodds Science Publishing, 2022.
[17] 于飞, 施卫明. 近10年中国大陆主要粮食作物氮肥利用率分析[J]. 土壤学报, 2015, 52(6): 1311-1324.
Yu Fei, Shi Weiming. Analysis of nitrogen fertilizer efficiency of major grain crops in Chinese mainland past 10 years [J]. Journal of Soil Science, 2015, 52(6): 1311-1324.
[18] Wang Tianhai, Liu Yadong, Wang Minghui, et al. Applications of UAS in crop biomass monitoring: A review [J]. Frontiers in Plant Science, 2021, 12: 616689.
[19] 程曼, 蔡振江, Ning Wang, 等. 基于地面激光雷达的田间花生冠层高度测量系统研制[J]. 农业工程学报, 2019, 35(1): 180-187.
Cheng Man, Cai Zhenjiang, Ning Wang, et al. Development of field peanut canopy height measurement system based on ground LiDAR [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(1): 180-187.
[20] Bai G, Ge Y, Hussain W, et al. A multi‑sensor system for high throughput field phenotyping in soybean and wheat breeding [J]. Computers and Electronics in Agriculture, 2016, 128: 181-192.
[21] Liebisch F, Kirchgessner N, Schneider D, et al. Remote, aerial phenotyping of maize traits with a mobile multi‑sensor approach [J]. Plant methods, 2015, 11: 1-20.
[22] Thi Phan AT, Takahashi K, Rikimaru A, et al. Method for estimating rice plant height without ground surface detection using laser scanner measurement [J]. Society of Photo‑optical Instrumentation Engineers, 2016, 10(4): 046018.
[23] Clark M L, Roberts D A, Ewel J J, et al. Estimating above‑ground biomass of tropical rainforest of different degradation levels in Northern Borneo using airborne LiDAR [J]. Forest Ecology and Management, 2014, 328: 335-341.
[24] Luo Shezhou, Wang Cheng, Xi Xiaohuan, et al. Fusion of airborne LiDAR data and hyperspectral imagery for aboveground and belowground forest biomass estimation [J]. Ecological Indicators, 2017, 73: 378.
[25] 金志坤, 景云鹏, 刘刚. 基于无人机LiDAR的农田平整地势测量方法[J]. 农业机械学报, 2021, 52(S1): 51-57, 117.
Jin Zhikun, Jing Yunpeng, Liu Gang. Measurement method of farmland leveling based on UAV LiDAR [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(S1): 51-57, 117.
[26] Matvienko G, Singh U N, Timofeev V, et al. Fluorescence LiDAR method for remote monitoring of effects on vegetation [C].LiDAR Technologies, Techniques, and Measurements for Atmospheric Remote Sensing II. SPIE, 2006, 6367: 115-122.
[27] 张永江, 刘良云, 侯名语, 等. 植物叶绿素荧光遥感研究进展[J]. 遥感学报, 2009, 13(5): 963-978.
[28] 杨健. 荧光激光雷达及其对农作物氮胁迫定量监测的研究[D]. 武汉: 武汉大学, 2017.
[29] 史硕. 时间分辨荧光激光雷达植被遥感探测基础研究[D]. 武汉: 武汉大学, 2015.
[30] Zaman‑Allah M, Vergara O, Araus J L, et al. Unmanned aerial platform‑based multi‑spectral imaging for field phenotyping of maize [J]. Plant Methods, 2015, 11(1): 35.
[31] Rincón M G, Mendez D, Colorado J D. Four‑dimensional plant phenotyping model integrating low‑density LiDAR data and multispectral images [J]. Remote Sensing, 2022, 14(2): 356.
[32] 魏鹏飞, 徐新刚, 李中元, 等. 基于无人机多光谱影像的夏玉米叶片氮含量遥感估测[J]. 农业工程学报, 2019, 8(35): 126-133.
Wei Pengfei, Xu Xingang, Li Zhongyuan, et al. Remote sensing estimation of nitrogen content of summer maize leaves based on UAV multispectral imagery [J]. Transactions of the Chinese Society for Agricultural Engineering, 2019, 8(35): 126-133.
[33] Khanal S, Fulton J, Shearer S. An overview of current and potential applications of thermal remote sensing in precision agriculture [J]. Computers and Electronics in Agriculture, 2017, 139: 22-32
[34] Mangus D L, Sharda A, Zhang Naiqian. Development and evaluation of thermal infrared imaging system for high spatial and temporal resolution crop water stress monitoring of corn within a greenhouse [J]. Computers and Electronics in Agriculture, 2016, 121: 149-159.
[35] Bian Jiang, Zhang Zhitao, Chen Junying, et al. Simplified evaluation of cotton water stress using high resolution unmanned aerial vehicle thermal imagery [J]. Remote Sensing, 2019, 11(3): 267.
[36] Aude C, Benoît P, Magalie D, et al. Multi‑scale high‑throughput phenotyping of apple architectural and functional traits in orchard reveals genotypic variability under contrasted watering regimes [J]. Horticulture Research, 2019, 6(1): 52.
[37] Zhao Wenyi, Dong Xiaohua, Wu Zhengping, et al. Using infrared thermal imaging technology to estimate the transpiration rate of citrus trees and evaluate plant water status [J]. Journal of Hydrology, 2022, 615: 128671.
[38] Hamada Y, Cook D, Bales D. EcoSpec: Highly equipped tower‑based hyperspectral and thermal infrared automatic remote sensing system for investigating plant responses to environmental changes [J]. Sensors, 2020, 20(19): 5463.
[39] Xiao Qinlin, Wu Na, Tang Wentan, et al. Visible and near‑infrared spectroscopy and deep learning application for the qualitative and quantitative investigation of nitrogen status in cotton leaves [J]. Frontiers in Plant Science, 2022, 13: 1080745.
[40] Cassanelli D, Lenzini N, Ferrari L, et al. Partial least squares estimation of crop moisture and density by near‑infrared spectroscopy [J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-10.
[41] Fang Jing, Jin Xiu, Wu Lin, et al. Prediction models for the content of calcium, boron and potassium in the fruit of ‘Huangguan’ pears established by using near‑infrared spectroscopy [J]. Foods, 2022, 11(22): 3642.
[42] Yamaguch T , Tanaka Y, Imachi Y, et al. Feasibility of combining deep learning and RGB images obtained by unmanned aerial vehicle for leaf area index estimation in rice [J]. Remote Sensing, 2020, 13(1): 84.
[43] Walter J, Edwards J, Mcdonald G, et al. Photogrammetry for the estimation of wheat biomass and harvest index [J]. Field Crops Research, 2018, 216: 165-174.
|