[ 1 ] 王镇恒, 王广智. 中国名茶志[M]. 北京: 中国农业出版社, 2000.
[ 2 ] 韩余, 肖宏儒, 秦广明, 等. 国内外采茶机械发展状况研究[J]. 中国农机化学报, 2014, 35(2): 20-24.
Han Yu, Xiao Hongru, Qin Guangming, et al. Studies on develop situations of tea‑leaf picker both at home and abroad [J]. Journal of Chinese Agricultural Mechanization, 2014, 35(2): 20-24.
[ 3 ] Wei J J, Chen Y, Jin X J, et al. Researches on tender tea shoots identification under natural conditions [J]. Journal of Tea Science, 2012, 18: 99-121.
[ 4 ] Zhang L, Zhang H, Chen Y, et al. Real‑time monitoring of optimum timing for harvesting fresh tea leaves based on machine vision [J]. International Journal of Agricultural and Biological Engineering, 2019, 12(1): 6-9.
[ 5 ] 杨福增, 杨亮亮, 田艳娜, 等. 基于颜色和形状特征的茶叶嫩芽识别方法[J]. 农业机械学报, 2009, 40(S1): 119-123.
Yang Fuzeng, Yang Liangliang, Tian Yanna, et al. Recognition of the tea sprout based on color and shape features [J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(S1): 119-123.
[ 6 ] 龙樟, 姜倩, 王健, 等. 茶叶嫩芽视觉识别与采摘点定位方法研究[J]. 传感器与微系统, 2022, 41(2): 39-41, 45.
Long Zhang, Jang Qian, Wang Jian, et al. Research on method of tea flushes vision recognition and picking point localization [J]. Transducer and Microsystem, 2022, 41(2): 39-41, 45.
[ 7 ] Yang H, Chen L, Chen M, et al. Tender Tea Shoots Recognition and Positioning for Picking Robot Using Improved YOLO-V3 Model [J]. IEEE Access, 2019, 7: 180998-181011.
[ 8 ] Chen Y, Chen S. Localizing plucking points of tea leaves using deep convolutional neural networks [J]. Computers and Electronics in Agriculture, 2020, 171: 105298.
[ 9 ] Zhang C, Wang J, Lu G D, et al. Automated tea quality identification based on deep convolutional neural networks and transfer learning [J]. Journal of Food Process Engineering, 2023, 46(4): 14303-14322.
[10] Liu C L, Lu W Y, Gao B Y, et al. Rapid identification of chrysanthemum teas by computer vision and deep learning [J]. Food Science and Nutrition, 2020, 8(4): 1968-1977.
[11] Yang J, Chen Y. Tender leaf identification for early‑spring green tea based on semi‑supervised learning and image processing [J]. Agronomy‑Basel, 2022, 12(8): 1958-1967.
[12] 原艳芳. 名优茶采摘机械手与采摘策略研究[D]. 武汉:华中农业大学, 2017.
Yuan Yanfang. Research on the picking manipulator of famous tea and picking strategy [D]. Wuhan: Huazhong Agricultural University, 2017.
[13] 肖宏儒. 现代茶园机械装备研究与设计[M]. 北京: 中国农业科学技术出版社, 2018.
[14] 张浩, 陈勇, 汪巍, 等. 基于主动计算机视觉的茶叶采摘定位技术[J]. 农业机械学报, 2014, 45(9): 61-65, 78.
Zhang Hao, Chen Yong, Wang Wei, et al. Positioning method for tea picking using active computer vision [J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(9): 61-65, 78.
[15] 王文明, 肖宏儒, 宋志禹, 等. 茶叶生产全程机械化技术研究现状与展望[J]. 中国农机化学报, 2020, 41(5): 226-236.
Wang Wenming, Xiao Hongru, Song Zhiyu, et al. Research status and prospects of tea production mechanization technology [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(5): 226-236.
[16] 彭斯, 陈玉萍. 农户绿色生产技术采用行为及其对收入的影响——以武陵山茶叶主产区为例[J]. 中国农业大学学报, 2022, 27(2): 243-255.
Peng Si, Chen Yuping. Farmers' green production technology adoption behavior and its impact on income: Taking the main tea producing area of Wuling Mountain as an example [J]. Journal of China Agricultural University, 2022, 27(2): 243-255.
[17] Du Z, Hu Y, Buttar N A. Analysis of mechanical properties for tea stem using grey relational analysis coupled with multiple linear regression [J]. Scientia Horticulturae, 2020, 260: 108886.
[18] Erbay Z, Icier F. Optimization of hot air drying of olive leaves using response surface methodology [J]. Journal of Food Engineering, 2009, 91(4): 533-541.
[19] Dalvand M J, Mohtasebi S S, Rafiee S. Modeling of electro hydrodynamic drying process using response surface methodology [J]. Food Science & Nutrition, 2014, 2(3): 200-209.
[20] Zeng Z, Chen M, Wang X, et al. Modeling and optimization for konjac vacuum drying based on response surface methodology (RSM) and artificial neural network (ANN)[J]. Processes, 2020, 8: 1-15.
|