[ 1 ] 程洋洋, 惠靖茹, 郝竞霄, 等. 香菇柄发酵酱营养品质及风味成分研究[J]. 中国酿造, 2022, 41(7): 162-167.
[ 2 ] 2021年度全国食用菌统计调查结果分析[J]. 中国食用菌, 2023, 42(1): 118-127.
[ 3 ] 陈红, 夏青, 左婷, 等. 基于纹理分析的香菇品质分选方法[J]. 农业工程学报, 2014, 30(3): 285-292.
Chen Hong, Xia Qing, Zuo Ting, et al. Quality grading method of shiitake based on texture analysis [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(3): 285-292.
[ 4 ] Liu Q, Fang M, Li Y S, et al. Deep learning based research on quality classification of shiitake mushrooms [J]. LWT, 2022, 168, 113902.
[ 5 ] 张晓蕾. 卷积神经网络光谱分析方法及其在农产品品质检测中的应用[D]. 杭州: 浙江大学, 2021.
[ 6 ] 王相友, 李晏兴, 杨振宇, 等. 基于改进YOLOv4模型的马铃薯中土块石块检测方法[J]. 农业机械学报, 2021, 52(8): 241-247, 262.
Wang Xiangyou, Li Yanxing, Yang Zhenyu, et al. Detection method of clods and stones from impurified potatoes based on improved YOLOv4 algorithm [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(8): 241-247, 262.
[ 7 ] Medeiros A, Bernardes R C, Silva L, et al. Deep learning‑based approach using X-ray images for classifying crambe abyssinica seed quality [J]. Industrial Crops and Products, 2021, 164, 113378.
[ 8 ] Zhang X, Wang G H. Study pose detection based on photometric stereo and lightweight YOLOv4[J]. CAAI Transactions on Intelligence Technology, 2022, 2(1): 32-37.
[ 9 ] Zou Q J, Xiong K, Fang Q, et al. Deep imitation reinforcement learning for self‑driving by vision [J]. CAAI Transactions on Intelligence Technology, 2021, 6(4): 493-503.
[10] Lecun Y, Bengio Y, Hinton G. Deep learning [J]. Nature, 2015, 521(7553): 436-444.
[11] 徐艳蕾, 王琦, 翟钰婷, 等. 基于MICS-CoTNet的黑木耳品质分类方法[J]. 农业工程学报, 2023, 39(5): 146-155.
Xu Yanlei, Wang Qi, Zhai Yuting, et al. Method for the classification of black fungus quality using MICS-CoTNet [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(5): 146-155.
[12] Hu J, Shen L, Sun G. Squeeze‑and‑excitation networks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[13] 孟庆宽, 张漫, 杨晓霞, 等. 基于轻量卷积结合特征信息均和的玉米幼苗与杂草识别[J]. 农业机械学报, 2020, 51(12): 238-245.
[14] Roy S K, Dubey S R, Chatterjee S, et al. FuSENet: Fused squeeze‑and‑excitation network for spectral‑spatial hyperspectral image classification [J]. IET Image Processing, 2020, 14(8): 1653-1661.
[15] 刘万军, 李嘉欣, 曲海成. 基于多尺度卷积神经网络的交通标示识别研究[J]. 计算机应用研究, 2022, 39(5): 1557-1562.
[16] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition [J]. Computer Vision and Pattern Recognition, 2015, 34(10): 47-50.
[17] Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications [EB/OL]. https://arxiv.org /abs /1704. 04861, 2017-04-17.
[18] Lin T Y,Goyal P,Girshick R,et al. Focal loss for dense object detection [C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[19] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift [C]. International Conference on Machine Learning. PMLR, 2015: 448-456.
[20] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: A simple way to prevent neural networks from overfitting [J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
[21] Pan S J, Yang Q. A survey on transfer learning [J]. IEEE Transactions on Knowledge and Data Engineering,2010, 22(10): 1345-1359.
[22] 张林朋, 杨红云, 钱政, 等. 基于改进的VGG16网络和迁移学习的水稻氮素营养诊断[J]. 中国农业大学学报, 2023, 28(6): 219-229.
|