[ 1 ] Yang Yihong, Ding Sheng, Liu Yuwen, et al, Fast wireless sensor for anomaly detection based on data stream in an edge‑computing‑enabled smart greenhouse [J]. Digital Communications and Networks, 2022, 8(4): 498-507.
[ 2 ] 张荣昌. 基于数据挖掘的用电数据异常的分析与研究[D]. 北京: 北京交通大学, 2017.
Zhang Rongchang. Analysis of abnormalelectro‑data based on datamining [D]. Beijing: Beijing Jiaotong University, 2017.
[ 3 ] 王鑫, 张涛, 金映谷. 异常检测算法综述[J]. 现代计算机, 2020(30): 21-26.
Wang Xin, Zhang Tao, Jin Yinggu. Overview of anomaly detection algorithms [J]. Modern Computer, 2020(30): 21-26.
[ 4 ] 贺玉海, 周庆琨, 程埮晟, 等. 基于改进K-Medoids的组合聚类算法及异常值检测研究[J]. 大连理工大学学报, 2022, 62(4): 403-410.
He Yuhai, Zhou Qingkun, Cheng Tansheng, et al. Research on combinatorial clustering algorithm and anomaly detection based on improved K-Medoids [J]. Journal of Dalian University of Technology, 2022, 62(4): 403-410.
[ 5 ] 施珮, 匡亮, 唐玥, 等. 基于改进SVDD算法的池塘水质数据流异常检测[J]. 农业工程学报, 2021, 37(24): 249-256.
Shi Pei, Kuang Liang, Tang Yue, et al. Abnormal detection of aquaculture water quality data stream using an improved SVDD in pond [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(24): 249-256.
[ 6 ] 李忠, 靳小龙, 庄传志, 等. 面向图的异常检测研究综述[J]. 软件学报, 2021, 32(1): 167-193.
Li Zhong, Jin Xiaolong, Zhuang Chuanzhi, et al. Overview on graph based anomaly detection [J]. Journal of Software, 2021, 32(1): 167-193.
[ 7 ] 张仁斌, 吴佩, 陆阳, 等 .基于混合马尔科夫树模型的ICS异常检测算法[J]. 自动化学报, 2020, 46(1): 127-141.
Zhang Renbin, Wu Pei, Lu Yang, et al. Anomaly detection algorithm in ICS based on mixed‑order markov tree model [J]. Acta Automatica Sinica, 2020, 46(1): 127-141.
[ 8 ] Ren L, Zhang Q, Shi W, et al. Edge‑based personal computingservices: fall detection as a pilot study [J]. Computing, 2019, 101(8): 1199-1223.
[ 9 ] Shi Weisong, Sun Hui, Cao Jie, et al. Edge computing: A new computing model in the era of everything [J]. Journal of Computer Re⁃search and Development, 2017, 54(5): 907-924.
[10] 程鑫. 农业物联网边缘计算的研究与应用[D]. 天津: 河北工业大学, 2020.
Cheng Xin. Research and application of agricultural Internet of Things edge computing [D]. Tianjin: Hebei University of Technology, 2020.
[11] 费欢, 肖甫, 李光辉, 等. 基于多模态数据流的无线传感器网络异常检测方法[J]. 计算机学报, 2017, 40(8): 1829-1842.
Fei Huan, Xiao Fu, Li Guanghui, et al. An anomaly detection method of wireless sensor network based on multi‑modals data stream [J]. Chinese Journal of Computers, 2017, 40(8): 1829-1842.
[12] 王树航, 徐君, 杨锴, 等. 边缘计算和感知融合在智能自助咖啡机中的应用研究[J]. 小型微型计算机系统, 2020, 41(7): 1451-1457.
Wang Shuhang, Xu Jun, Yang Kai, et al. Research on application of edge computing and perceptual fusion techniques in smart self⁃service coffee machine [J]. Journal of Chinese Computer Systems, 2020, 41(7): 1451-1457.
[13] Satyanarayanan M, Bahl P, Caceres R, et al. The case for VM‑Based cloudlets in mobile computing [J]. IEEE Pervasive Computing, 2009, 8(4): 14-23.
[14] Chu Yunxia, Li Siyu, Zhang Jun. The research of wireless edge computing gateway with anomaly detection [J]. Procedia Computer Science, 2022, 198: 460-465.
[15] Yu W, Liang F, He X, et al. A survey on the edge computing for the internet of things [J]. IEEE Access, 2018, 6: 6900-6919.
[16] 施巍松, 孙辉, 曹杰, 等. 边缘计算: 万物互联时代新型计算模型[J]. 计算机研究与发展, 2017, 54(5): 907-924.
Shi Weisong, Sun Hui, Cao Jie, et al. Edge computing: An emerging computing model for the internet of everything era [J]. Journal of Computer Research and Development, 2017, 54(5): 907-924.
[17] 王勇, 姜懿芮, 徐志颖, 等. 日光温室蔬菜智能化管理系统建模[J]. 北方园艺, 2021(1): 160-163.
Wang Yong, Jiang Yirui, Xu Zhiying, et al. Modeling of vegetable intelligent management system in solar greenhouse [J]. Northern Horticulture, 2021(1): 160-163.
(上接第 99 页)
[14] Wang Hongkang, Li Li, Wu Yong, et al. Recurrent neural network model for prediction of microclimate in solar greenhouse [J]. IFAC‑PapersOnLine, 2018, 51(17): 790-795.
[15] 郁莹珺, 徐达宇, 寿国忠, 等. 基于经验模态分解和小波神经网络的温室温湿度预测[J]. 江苏农业科学, 2019, 47(1): 211-216.
[16] 张坤鳌, 赵凯. 基于改进CFA PSO-RBF神经网络的温室温度预测研究[J]. 计算机应用与软件, 2020, 37(6): 95-99, 107.
Zhang Kunao, Zhao Kai. Greenhouse temperature prediction based on improved CFA PSO-RBF neural network [J]. Computer Applications and Software, 2020, 37(6): 95-99, 107.
[17] 蔡淑芳, 林营志, 吴宝意, 等. 利用线性和非线性耦合方式建立温室温湿度预测模型[J]. 中国农业气象, 2022, 43(7): 527-537.
Cai Shufang, Lin Yingzhi, Wu Baoyi, et al. Greenhouse temperature and humidity prediction models based on linear and nonlinear coupling methods [J]. Chinese Journal of Agrometeorology, 2022, 43(7): 527-537.
[18] Heidari A A, Mirjalili S, Faris H, et al. Harris hawks optimization: Algorithm and applications [J]. Future Generation Computer Systems, 2019, 97: 849-872.
[19] 张雪花. 基于灰色粒子群算法的温室环境多目标优化控制研究[D]. 合肥: 安徽农业大学, 2017.
[20] Hashim F A, Hussien A G. Snake optimizer: A novel meta‑heuristic optimization algorithm [J]. Knowledge‑Based Systems, 2022, 242: 108320.
|